• Title/Summary/Keyword: Heat release ratio

Search Result 190, Processing Time 0.023 seconds

Combustion Noise Characteristics in Gas and Liquid Flames (가스 및 분무화염의 연소소음 특성에 관한 실험연구)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

A Study on the Diesel Flame by Means of Image Analysis ofn Shadow Photographs (음영사진의 화상해석에 의한 디젤화염에 관한 연구)

  • 장영준;박호준;신본무정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1222-1233
    • /
    • 1990
  • The formation and oxidation processes of soot particles in a diesel flame were investigated with a rapid compression machine. A cloud of soot particles was successfully visualized by means of the instantaneous laser shadow photographs technique and the equivalence ratio of the soot formation zone was estimated from a measured fuel concentration distribution in a nonevaporating spray. The temporal and spatial variation of soot concentration in the flame was also correlated with the rate of heat release. Soot particles appears first in a region near the flame tip when diffusion combustion period starts, and its concentration is a maximum at about the end of injection, then decreases due to oxidation. The reason for soot being formed in a fuel lean region near the flame tip is the evaporated fuel requires time to be pyrolized as it travels through the burning fuel rich zone towards the flame tip.

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF

Measurement and Analysis of Knock for Rapid Throttle Opening in SI Engines (가솔린 엔진에서 급가속 운전시 노킹 측정 및 분석)

  • 이종화;박경석;김현용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.28-35
    • /
    • 1999
  • In this study, investigation of transient knock characteristics in a spark-ignition engine has been carried out. The universal knock threshold values were found by a DFDD method and a NSDBP method which is a non-dimensional version of the SDBP method. Also modified NSDBP method could be used for transient knock detection. In a commercial ECU , spark timing was retarded from the steady -state spark timing during rapid throttle opening to avoid uncomfortable feeling and knock. Knock usually occurred just after the start of rapid throttle opening when spark timing was set, as values for the steady state condition. We found that air/fuel ratio deeply involved with the knock during transient condition. Due to the difference of initial heat release rate, knock occurred more easily at rich air/fuel ratio than at lean air/fuel ratio.

  • PDF

A Study of Thermal Behaviors on the Effect of Aspect Ratio of Ventilation Hole in Disk Brake (디스크 브레이크의 방열구 형상비에 따른 열적 거동에 관한 연구)

  • 김진택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.384-388
    • /
    • 2002
  • The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of aspect ratio of ventilated hole on the heat dissipation was investigated.

The Water Curtain Installation Guideline for Fire Spread Prevention in Market (재래시장의 화재확산 방지를 위한 수막설비 설치 지침)

  • Choi, Jung-Uk;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.269-274
    • /
    • 2016
  • This paper aims to suggest the water curtain installation guideline for prevention of fire spread. The water curtain systems play a role in preventing fire spread which is caused by fire flames and radiation heat release from a fire source. The radiation attenuation ratio is affected by the water droplet size, vertical distance from the nozzle and flow rate. This study suggests the water curtain installation guideline as follows : (1) Investigation of a reference store array (2) Calculation of the number of drencher heads (3) Review of the relationship between droplet size and attenuation factor depending on the height of the drencher head (4) Review of a drencher head array and spray overlapping. The reference traditional market in which a fire compartment is installed using a water curtain can be predicted to have a radiation attenuation ratio of 50%.

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment (환기 조건에 따른 화재거동 연구)

  • Kim, Sung-Chan;Hamins, Anthony
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.367-373
    • /
    • 2008
  • A series of fire experiments has been conducted to provide an improved understanding of the fire structure of under-ventilated compartment fires. A comprehensive and quantitative assessment of gaseous species from the fire was made in the upper layer of fire in a 40 % reduced scale ISO 9705 fire compartment. The global equivalence ratio (GER) concept was used to characterize the fire behavior for various fire sizes, fuel types and ventilation conditions. The oxygen concentration in the upper layer reached to zero near the global equivalence ratio of $0.4{\sim}0.6$ while the carbon monoxide concentration increases with increasing the global equivalence ratio. Classification parameters of ISO19706 were also compared with the reduced scale experimental data for under ventilation fire.

INFLUENCE OF THE MIXING RATIO OF DOUBLE COMPONENTIAL FUELS ON HCCI COMBUSTION

  • Sato, S.;Kweon, S.P.;Yamashita, D.;Iida, N.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 2006
  • For practical application on the HCCI engine, the solution of subjects, such as control of auto-ignition timing and avoidance of knocking, is indispensable. This study focused on the technique of controlling HCCI combustion appropriately, changing the mixture ratio of two kinds of fuel. Methane and DME/n-Butane were selected as fuels. The influences, which the mixing ratio of two fuels does to ignition timing, ignition temperature, rate of heat release and oxidation reaction process, were investigated by experiment with 4-stroke HCCI engine and numerical calculation with elementary reactions.