• Title/Summary/Keyword: Heat recovery ventilator

Search Result 64, Processing Time 0.027 seconds

폐열회수 환기유닛의 인증제도 및 성능시험방법

  • 한화택;김경환
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • 본고에서는 한국설비기술협회에서 추진 중인 패열화수 환기유닛(Heat Recovery Ventilator)에 대한 품질인증제도의 추진배경 및 핵심적인 몇가지 인증표시항목에 대한 성능시험 방법에 관하여 소개한다.

  • PDF

A Study on Heat Recovery Characteristics of Porous Media According to Periodic Oscillating Flows (주기적 왕복유동에 의한 축열매체의 열회수 특성에 관한 연구)

  • Han, Hwa-Taik;Shin, Min-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.175-182
    • /
    • 2007
  • The objective of the present study is to investigate the heat storage characteristics of a packed bed according to periodically oscillating flows. Experiments have been performed to measure transient temperature distributions in solid and fluid Phases of the porous media. A simplified analytical model has been developed with intra-particle and dispersion effects neglected, and non-dimensional parameters have been derived. The transient temperature distributions according to the simplified numerical model agree well with the experimental results. Heat storage efficiencies defined in two different ways are obtained for various time periods and face velocities.

Energy Saving Effect of ERV(Energy Recovery Ventilator) with Economizer Cycle - Focused on the School Buildings - (Economizer cycle을 채용한 전열교환형 환기시스템의 에너지 절감 효과 분석 -국내 학교를 대상으로-)

  • Kim, Joo-Wook;Park, Jae-Hyung;Song, Doo-Sam;Chu, Euy-Sung;Kwon, Young-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.695-700
    • /
    • 2009
  • Maintaining an IAQ with fresh in school building is very important because the good IAQ can be possible to improve the academic performance. Since school buildings are very dense and require a lot of fresh air, the need for ERV(Energy Recovery Ventilator) has become obvious. While opening a window does provide ventilation, the building's heat and humidity will then be lost in the winter and gained in the summer, both of which are undesirable for the indoor climate and for energy efficiency. ERV technology offers an optimal solution: fresh air, better climate control and energy efficiency. However, when the outdoor air condition is favorable to control the indoor environment such as spring and autum in Korea, heat exchange in ERV would rather increase the cooling load than diminish. Economizer cycle control which using the outdoor air in controlling the indoor thermal environment has many benefit in terms of energy saving and IAQ control. In this study, the ERV with economizer cycle control will be suggested. And then the system control characteristics and energy saving effect will be analyzed through the TRSNSYS Simulation.

  • PDF

Evaluation of the Performance and the Energy Consumption Characteristics of Heat Recovery Ventilators in Apartments (공동주택 열교환기의 성능 및 에너지소비 특성 평가)

  • Kim Sang-Min;Park Byung-Yoon;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.496-504
    • /
    • 2005
  • Heat recovery ventilators (HRV) are developed in order to satisfy both energy conservation and the improvement of indoor air quality as an alternative for current natural ventilation systems and local mechanical ventilation systems in kitchens and bathrooms. However, the performance of HRV system and the consequent effect on heating and cooling energy saving have not been sufficiently validated quantitatively in case of the application of HRVs in real residences. In this study, field measurement and computer simulation were conducted in both summer and winter period to assess the performance and validate energy conservation effect of HRVs. Under the Korea weather condition, average total heat recovery efficiency was $27\%$ in summer and $46\%$ in winter. According to the field measurement, HRV system can save the energy by $10\%$ in summer and 15$\%$ in winter. Furthermore, according to the simulation assessment, HRV system can save the energy by $17\%$ in summer and $17\%$ in winter.