• Title/Summary/Keyword: Heat recovery

Search Result 997, Processing Time 0.032 seconds

Study on Heat Recovery System using Waste Biomass (폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구)

  • 이충구;이세균;이계복;이석호;김정현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.514-521
    • /
    • 2004
  • Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. Brushwood biomass was used for the present experimental study. Two biomass heat recovery systems were designed and developed. Polyethylene helical pipe line of 0.03 m (inner diameter) was installed to recover the heat of biomass dump. The fermentation process of biomass dump was maintained for 12 weeks. The inner average temperature of biomass was about 51$^{\circ}C$ for both hot exchanger systems. The current heat recovery system could recover up to 6 ㎉/kg of energy.

Study on the Heat Recovery Design Methods for the Flue Gas from Combustion and Incineration Processes (연소 또는 소각 과정에서 발생하는 배기가스의 폐열 회수 설계 방법에 관한 연구)

  • Lee, Chan;Jung, Bong-Jin
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Presented is the design method of the waste heat recovery facility for the flue gas produced from combustion and incineration processes of large industrial environmental waste treatment and cogeneration plants. The present study assumes the basic design concept of wast heat recovery facility as the combination of waste heat recovery boiler and steam power cycle, and then describes the modeling technique, the design concept and criteria of each component of waste heat recovery facility. In addition, the present study investigates how the thermal performance of waste heat recovery facility varies with boiler operating pressure and waste heat recovery heat exchanger design at the same flue gas condition.

  • PDF

Test of Heat Recovery Performance of a Microturbine (마이크로터빈의 열회수 성능시험)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop;Chang, Se-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.

A Study on Operating Method by Energy Evaluation and Performance Evaluation of Heat Recovery Ventilator According to Outdoor Conditions (전열교환 환기시스템의 외기변화에 따른 성능평가 및 에너지평가를 통한 운전방안에 관한 연구)

  • Kim, Kwang-Hyun;Yee, Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Recently, regulation of ventilator installation and its details has been revised and the establishment of heat recovery ventilator in newly built apartments has been obligated. This study was done to offer the method of operation and design of heat recovery ventilator to save energy by measuring its efficiency and comparing with the results of experiment. This paper confirmed that it is desirable to operate heat recovery ventilator by using "by-pass mode" within $60{\sim}80%$ scope of the difference indoor absolute humidity in spring and autumn and outdoor absolute humidity and heat recovery ventilator of energy saving effect is better than constant air volume system.

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

A Study on the Improvement of Efficiency of Heat Transfer on the Heat Recovery Ventilator with Rotating Porous Disk (로터리형 폐열회수 환기장치의 열전달 성능 향상에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1352-1357
    • /
    • 2014
  • In the present study, the heat transfer performance on the heat recovery ventilator with rotary disk were experimentally investigated. The temperature of entrance and exit of the heat recovery ventilator, air flow distribution of high temperature air and low temperature air, heat flux and the overall heat transfer coefficients are estimated from the experimental results. As the number of revolution of rotary disk, the air flow distribution increase, heat flux and overall heat transfer coefficients increase.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.