• Title/Summary/Keyword: Heat rate

Search Result 5,899, Processing Time 0.036 seconds

2차계통 구성 기기의 성능저하에 따른 Heat Rate 변화 분석

  • 박성훈;최해윤;이기원;지성구;권종수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.602-607
    • /
    • 1996
  • 원자력 발전소의 효율증대 및 경제적인 측면에서 2차계통 구성부품의 보수 및 유지를 위해서는 발전소 2차계통 구성 기기의 성능저하로 인한 Heat Rate의 변화와 그에 따른 출력변화를 감시하는 것이 무엇보다 중요하다. 이를 위하여, 영광 3호기의 성능보증 시험시 사용한 방법을 이용하여 Heat Rate를 계산하는 프로그램을 개발하였으며, 이 프로그램을 이용하여 2차계통 주요 구성 기기의 성능저하에 따른 Heat Rate의 변화율 계산을 수행하였다. 이 프로그램의 계산결과와 영광 3호기 성능보증시험결과를 비교하여 이 프로그램이 Heat Rate를 정확히 계산할 수 있음과, Heat Rate의 변화율 계산의 타당성을 확인하였다. 또한, Heat Rate의 변화율을 이용한 2차계통 주요 구성 기기의 성능진단 시스템의 논리를 제시하였다.

  • PDF

Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger (세라믹 열교환기의 성능평가를 위한 실험적 연구)

  • Choi, Hyun-Soo;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

The Seasonal Variation of the Heat Budget in Deukryang Bay (득량만의 열수지 계절 변동)

  • 주용환;조규대
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • Surface heat budget of the Deukryang Bay from July 1, 1992 to September 12, 1993 is analyzed by us- ing the meteorological data (by Changhung Observatory and Mokpo Meteorological Station) and oceanogaphical data (by Research Center for Ocean Industrial Development. Pukyong National University). Each flux element at the sea surface which has annual variation Is derived with application of an aerodynamical bulk method and empirical formulae. The solar radiation Is the maximum In spring and sensible heat are the maximum in autumn and water. and minimum in summer The heat .storage rate is calclilated by using the rate of water temperature variation according to the depth. The oceanic transport heat is estimated as a residual. The net heat flux, the heat storage rate are positive In spring and summer, while they are negative in autumn and winter. The oceanic transport heat Is convergence In winter and divergence In the rest of seasons.

  • PDF

An experimental study on the heat transfer and turbulent flow of round jet impinging the plate with temperature gradient (온도구배를 갖는 평판에 대한 원형 충돌제트의 열전달 및 난류유동에 관한 실험적 연구)

  • 한충호;이계복;이충구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.855-860
    • /
    • 1999
  • An experimental study of jet impingement on the surface with linear temperature gradient is conducted with the presentation of the turbulent characteristics and the heat transfer rates measured when this jet impinges normally to a flat plate. The jet Reynolds number ranges from 30,000 to 90,000, the temperature gradient of the plate is 2~$4.2^{\circ}C$/cm and the dimensionless nozzle to plate distance(H/D) is from 6 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter(H/D) is 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number and the dimensionless nozzle to plate distance(H/D). It has been found that the heat transfer rate increases with increasing turbulent intensity.

  • PDF

A Study on the Effect of Nanofluids Flow Direction in Double Pipe (이중관 내부 나노유체의 유동방향 영향에 관한 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.82-91
    • /
    • 2021
  • We compared the heat transfer characteristics of the parallel and the counterflow flow in the concentric double tube of the Al2O3/water nanofluids using numerical methods. The high- and low-temperature fluids flow through the inner circular tube and the annular tube, respectively. The heat transfer characteristics according to the flow direction were compared by changing the volume flow rate and the volume concentration of the nanoparticles. The results showed that the heat transfer rate and overall heat transfer coefficient improved compared to those of basic fluid with increasing the volume and flow rate of nanoparticles. When the inflow rate was small, the heat transfer performance of the counterflow was about 22% better than the parallel flow. As the inflow rate was increased, the parallel flow and the counterflow had similar heat transfer rates. In addition, the effectiveness of the counterflow increased from 10% to 22% rather than the parallel flow. However, we verified that the increment in the friction factor of the counterflow is not large compared to the increment in the heat transfer rate.