• 제목/요약/키워드: Heat of transition

검색결과 586건 처리시간 0.032초

이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구 (A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel)

  • 오세욱;윤한기;문인철
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델 (A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.503-517
    • /
    • 1995
  • 강제대류 천이비등 열유속을 보다 실제 적으로 예측하기 위한 역학적 모델을 개발하였다. 이 모델은 가열된 벽면 근처를 어떤 기포기둥(Vapor Blanket)이 통과할 때 일어나는 다단계 비등과정 즉, 임계 기포기둥의 형성, 기포기둥밑의 미소액막(Macrolayer)의 기화 및 고갈, 그리고 얇은 기체막에서 일어나는 불안정한 막비등과정에 기초하였다. 핵비등이탈점 (DNB )과 막비등이탈점 (DFB)사이의 천이비등 곡선상의 열유속은 임계 기포기둥이 주어진 벽면을 통과할 동안 상기한 각 비등과정의 지속 시간비(Time Fraction)를 각 비등열유속에 곱한 후 그것을 합하여 정량화하였다. 이 모델의 예측치를 현재까지 발표된 문헌들에 나타난 실험치와 비교한 결과, 본 모델은 저건도 및 10 bar 근처의 고압조건의 실험치를 잘예측하는 것으로 나타났다.

  • PDF

충돌수분류의 천이 및 막비등열전달에 관한 연구 (An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제14권2호
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

TRIZ와 DEFORM을 활용한 트랜지션 노즐의 성형 공정 개선을 위한 가변 금형에 대한 연구 (A Study on Variable Mold for Improving the Forging Process of Transition Nozzle using TRIZ and DEFORM)

  • 황희건;정원지;설상석;김대영
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.29-35
    • /
    • 2020
  • Transition Nozzles are used in industrial air-cooled heat exchangers and widely used in industrial sites as an important component in the heat energy transfer between a heat source and an actuating fluid. There is a worldwide demand for transition nozzles with various materials and shapes, depending on the use environment. This paper aims to improve the transition nozzle forging process suitable for the production of many varieties using Steps 1 to 6 of the TRIZ Methodology for Problem Solving. By utilizing the TRIZ Methodology, this study derives a method to design a variable mold, which is more efficient and can reduce costs compared with having to use several molds. To verify the suitability of the methods derived using the TRIZ technique, a forging analysis is performed on a transition nozzle using DEFORMⓇ, a commercial program for plasticity analysis, and the nozzle material is evaluated for damage as a result of deformation of the transition nozzle thickness. The derived methods can be applied to transition nozzle formation equipment to improve the efficiency of the formation process.

Pharmaceutical studies on the polymorphism of hydrochlorothiazide

  • Kim, Bong-Hee;Kim, Johng-Kap
    • Archives of Pharmacal Research
    • /
    • 제7권1호
    • /
    • pp.47-52
    • /
    • 1984
  • Four polymorphic forms (I, II, III and IV) of hydrochlorothiazide have been characterized on the basis of x-ray diffractometry and differential thermal analysis. Form I was obtained by crystallization from N, N-dimethylformamide and Form II was crystallized from hot methanol. Form III was precipitated from sodium hydroxide aqueous solution by treatment with hydrochloric acid and Form IV was crystallized from 50% methanol. The metastable form I was a most stable form among four polymorphs, which was stable more than ten months at room temperature. The thermodynamic parameters such as heat of solution, enthalpy, entropy, free energy difference and transition temperature were determined by the measurement of intrinsic dissolution rate. The transition temperature and the heat of transition between the metastable Form I an Form II were determined to be $299.15^{\circ}$K and 5.03 Kcal/mole, respectively and free energy difference ($\delta$ F) was 302. 13 cal/mole. Diuretic action of these four polymorphic forms was also evaluated by monitoring the difference in urinary excretion of sodium, potassium and magnesium in rats.

  • PDF

유동 및 풀비등에 있어서 한계열플럭스 상태하의 천이기구 (Transition mechanism during the critical heat flux condition in flow and pool boiling)

  • 김경근;김명환;권형정;김종헌;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.40-53
    • /
    • 1989
  • Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.

  • PDF

차량용 열교환기 사각관 내부 흐름에서 압력강하 및 열전달 특성 (Pressure Drop and Heat Transfer Characteristics of Internal Flow of the Rectangular Tube for Automobile Heat Exchanger)

  • 강희찬;전길웅;김광일
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.489-492
    • /
    • 2006
  • The present work was performed to investigate the thermal and hydraulic characteristics of flow inside the plain and turbulator flat tubes for the automobile application. The pressure drop and heat transfer coefficient at laminar, transition and turbulent regimes were studied experimentally and numerically. The flow transition was confirmed by flow visualization and quantitative data. It is proposed equations for the friction and heat transfer coefficient in the fully developed laminar flow inside rectangular tube as function of aspect ratio.

  • PDF

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

4각 안내덕트 루프형상에 의한 난류특성변화 수치해석 (A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration)

  • 유근종;최훈기;최기림;신병주
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.