• 제목/요약/키워드: Heat of hydration

검색결과 712건 처리시간 0.029초

히트파이프를 이용한 매스콘크리트의 수화열 제어에 관한 실험 연구 (An Experimental Study on the Hydration Heat Control of Mass Concrete Using Heat Pipe)

  • 백동일
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.81-86
    • /
    • 2007
  • In order to eliminate the hydration heat of mass concrete, this paper reports the results of hydration heat control in mass concrete using the OCHP (Oscillating capillary tube heat pipe). In the summarized results of the mock up experiments, distributing the heat pipe at 300 mm intervals based on the center of the test specimen was the most effective. A 200 mm turn interval for the heat pipe was measured to be the most appropriate, taking into account the reinforcement placing at the actual site. Therefore, when the hydration heat control method using the heat pipe developed in this study is applied, not only canconstruction efficiency & a reduction in the necessary construction time be expected, but so can outstanding economical effects.

진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰 (An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season)

  • 양태진;김정훈;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.

혼화재 종류 및 대체율에 따른 고강도콘크리트의 수화열 저감 효과 (Reducing effect for Hydration Heat of High-Strength Concrete according to Admixture Types and Replacement Ratios)

  • 유범재;김용로;최세진;김상윤;김상규;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.409-414
    • /
    • 2001
  • The hydration of cement paste occurs when the cement is mixed with water. During the hydration, hydration heat causes the thermal stress depending on the size of concrete and the cement content. Especially in the high-strength concrete, we must give care to the concrete due to its large cement content. In this study, conduction calorimeter and concrete insulation hydration heat meter were used to investigate the hydration heat characteristics of cement and concrete. To reduce hydration heat of high-strength concrete, several types of replacement of fly-ash and blast-furnace slag powder were used in this experiment.

  • PDF

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

플라이애쉬를 사용한 수중불분리성 콘크리트의 수화열에 관한 연구 (A Study on the Hydration Heat of Antiwashout Underwater Concrete Using Fly Ash)

  • 권중현
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.30-34
    • /
    • 2000
  • The concretes cast in the sea water would be likely to be rich mix and mass concrete. Therefore it is important to check out the hydration heat of concrete and to reduce it to prevent the concrete from processing the temperature crack. Recently the antiwashout agent is used on underwater concrete for preventing from the segregation of concrete in the water. The experimental studies were done for the combined cement replaced by fly ash 30%unit weight of binder to study on the characteristics of hydration heat of antiwashout underwater concrete, and its characteristic was discussed by comparing on cast in sea water with anther one in air. The present paper showed that the hydration heat concrete replaced by 30%of fly ash was more significantly reduced than the normal concrete. The hydration heat of antiwashout underwater concrete was highter than that of normal concrete, but it was reduced lower than the normal concrete by adding fly ash.

  • PDF

응결시간차를 활용한 매스콘크리트의 수화열 조정에 관한 기초적 연구 (A Fundamental Study on the Control of Hydration Heat of Mass Concrete Using Setting Time Difference)

  • 배정렬;윤치환;김기철;한민철;오선교;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.41-45
    • /
    • 2002
  • Placing lift is applied to place mass concrete in order to reduce thermal cracks by hydration heat. But they results in cold joint between placing lifts, which bring about the loss of strength, water tightness and undesirable appearance. Therefore, in this paper, mechanical and hydration heat of mass concrete using super retarding agent developed through previous study are investigated in order to reduce the hydration heat and place it without place lift. According to test results, placing lifts combined with normal concrete and concrete containing super retarding agent have positive effects on reducing hydration heat. Especially, the crack index by thermal stress of the concrete containing super retarding agent less than a quarter, compared to that of plain concrete without placing lifts, and less than a half, compared to that of plain concrete with placing lifts.

  • PDF

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

수화열 저감제를 이용한 콘크리트 수화열 저감법 개발 (Thermal heat reduction of concrete using LHT)

  • 이상호;김용로;정양희;김도수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.701-704
    • /
    • 2006
  • Recently, the attention is paid to the problem of thermal crack by hydration heat according to the increase of high strength and mass concrete structures. At this point, various research has been carried out for the control of hydration heat in high strength and mass concrete. As a part of the research, the application of Low Heat Technology (LHT) for the control of thermal crack by hydration heat was investigated in this study. To investigate the application, it was selected LHT which can reduce hydration heat of concrete with effect in series I and II. Also, it was investigated the characteristics of hydration heat generation of low heat concrete using LHT with binder types in seriesIII.

  • PDF

벨라이트계 혼합 결합재의 수화열 특성에 관한 연구 (Study on Hydration Heat of Blended Belite Binder)

  • 이근주;조재우;정상화;김장호
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.145-150
    • /
    • 2011
  • 전국적으로 토목 및 건축 구조물의 대단위 공사 및 정비 사업이 발족 및 추진되어 부재 크기가 큰 매스 콘크리트 구조물이 많이 건설되고 있다. 대규모 콘크리트 구조물의 콘크리트 매트릭스 내 높은 수화열 발생은 콘크리트의 품질 및 시공 기간을 좌우하는 가장 중요한 요인이 되고 있다. 이로 인해 발생되는 내부 균열이 콘크리트의 내구성, 수밀성 및 강도를 저하 시키게 된다. 벨라이트계 저열 포틀랜드 시멘트와 산업부산물을 이용한 수화열을 저감시키는 방법으로 이 연구에서는 고로 슬래그 또는 플라이애쉬를 7단계로 치환한 2성 분계 결합재와 4단계로 치환한 3성 분계 결합재를 사용하였고, 혼화재의 치환율 변화가 재령에 따른 수화 발열량, 강도 및 SEM, XRD 등의 기초 물성에 미치는 영향을 비교 분석하였다. 플라이애쉬가 치환된 2성 분계 결합재의 28일 누적 수화열은 플라이애쉬 함유량의 증가함에 따른 높은 수화열 저감 효과를 보여주며, 고로 슬래그가 치환된 2성 분계 결합재의 28일 누적 수화열은 고로 슬래그 치환율이 증가함에 따라 감소하지만 수화열 감소 효과는 높은 치환율 대비 낮은 결과를 나타내었다. 3성 분계 결합재의 28일 누적 수화열의 경우 플라이애쉬 치환율이 높아짐에 따라 낮은 수화열 결과를 보여주며 특히 40% 플라이애쉬 및 30% 고로 슬래그 결합재는 벨라이트계 저열 포틀랜드 시멘트 대비 50%의 저열 효과를 보여주었다. 연구 결과를 통해 수화열 발생이 낮고 시공 가능한 압축강도를 가진 벨라이트계 혼합 결합재를 사용하여 콘크리트 내 온도 상승이 감소된 것을 보여주었다.

Modeling of ultimate value and kinetic of compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios

  • Djezzar, Mahdjoub;Ezziane, Karim;Kadri, Abdelkader;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.297-309
    • /
    • 2018
  • The objective of this study was to evaluate the influence of silica fume (SF) on the hydration heat and compressive strength of concrete. Portland cement with w/(c+sf) ratios varying between 0.25 to 0.45 was substituted by 10%, 20% and 30% of SF by mass. A superplasticizer was used to maintain a fluid consistency of the concrete. The heat of hydration was monitored continuously by a semi-adiabatic calorimetric method for 10 days at $20^{\circ}C$. Compressive strengths are tested for each mixture until age of 180 days. The results show that silica fume considerably influences the evolution and the ultimate values of the compressive strengths as well as the hydration heat especially for 10% rate. The w/b ratio has a considerable effect where its decrease modifies compressive strength and hydration heat more than silica fume. The correlation of the obtained results allows deducing of ultimate properties as well as the ages to reach half of their values. The correlation coefficients are close to unity and reflect the judicious choice of these relationships to be used to predict compressive strength and hydration heat.