• Title/Summary/Keyword: Heat of adsorption

Search Result 254, Processing Time 0.031 seconds

Effect of Monosaccharides Extracted by Saturated Portland Cement Solution on the Setting of the Lignocellulosic-Cement Composited (포화(飽和)세멘트 수용액(水溶液)에 의한 추출단당류(抽出單糖類)가 목질(木質)세멘트 복합체(複合體)의 경화(硬化)에 미치는 영향(影響))

  • Choi, Don-Ha;Shin, Dong-So;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.25-34
    • /
    • 1984
  • This experiment was carried out to investigate the effects of monosaccharides extracted by saturated portland cement solution on the cement setting in comparision with the inhibitory index (I) of each lignocellulosic-cement system. The wood species which have been widely reforested in Korea, Populus alba-grandulosa, Larix leptolepis, Abies holophylla, Pinus koraiensis, Pinus rigida, Pinus densiflora and agricultural wastes of rice husk and rice stalk were used at this study. The wood meal, 0.50g on dry weight basis, through 0.83 mm(20 mesh) and retained on 0.35mm (40 mesh) screen was extracted by 25 ml saturated portland cement solution and the pH of saturated portland cement solution Was 12.7. To eliminate cation exsisting in the extracted solution, the cation exchange column was used (Fig. 4). Afterwards the extracted monosaccharides were reduced into alditols with sodium borohydride and analyzed by the gas-liquid chromatography for xylan, mannan, arabinan, galactan, gluean. The heat of cement hydration for lignocellulosic-cement system was measured in Dewar flask (Fig. 2). And then the inhibitory indices were calculated from maximum hydration temperature, time and maximum slops of hydration curve of ligno cellulosic-cement systems. The results obtained were as follows; (1) The inhibitory index of pines-Pinus rigida (I=29.33) and Pinus densiflora (I=35.76), were lower than that of poplar-Populus alba-glandulosa (I=41.48), and the index of Larix ieptoiepis (I=73.00) was the highest among eight lignocellulosic-cement systems, and accordingly both Pinus rigida and Pinus des(flora were seemed to be good wood species for wood-cement composite manufacture. (2) In case of Pinus rigida, the inhibitory index was 29.33 and the ratio of the hexoses to the pemoses was 6.04 and in case of Larix leptolepis, the index and the ratio were 73.00 and 35.19, respectively. Therefore the inhibitory index increased with increasing the ratios of the hexoses to the pentoses. (3) The richer amount of xylose and mannose in species caused decreasing the slops of the hydration curve of the lignocellulosic-cement system, prohahly due to the chemical adsorption of the acetyl groups in the hemicellulose on the surface of cement grains. (4) The amoun of xylose and mannose were significant to the inhibitory index of each lignocellulosic-cement system but any specific relation between the amount of glucose and inhibitory index was not found.

  • PDF

Porous silica ceramics prepared by sol-gel process-Effect of $H_2O/TEOS$ molar ratio- (솔-젤법에 의한 다공성 실리카 세라믹스의 제조-$H_2O/TEOS$ 몰비의 영향-)

  • Lee, Jin-Hui;Kim, Wha-Jung;Lee, Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • Porous silica ceramics were prepared(with HCI catalyst) using H2O/TEOS molar ratios of 2.6~59.0, with the EtOH/TEOS ratio fixed. After preparing 9 kinds of sol, the followings were investigated; measurement of the gelation time, thermal analyses by TG/DTA, property analyses of the intermediates by FT-IR and X-ray diffractometry with dried samples, analyses of SiO2 polymer by FT-IR, the investigation of specific sur-face area and pore size distribution by N2-adsorption isotherm, and structural change of SiO2 polymer and pore morphology by TEM observation, with samples heat-treated to 50$0^{\circ}C$. In the concentrations of in-vestigated compositions and catalyst, gelation time showed a minimum at ca. 11 moles of water per one mole of TEOS, the highest degree of polymerization at ca. 8-18 moles, and the largest specific surface area at ca. 11 moles, which means that the polymerization proceeded fastest at ca. 11 moles of water. In con-clusion, the more water used, the faster the polymerization reaction up to ca. 11 moles, but more than ca. 11 moles of water caused retardation of gelation and resultant reduction of specific surface area.

  • PDF

Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS - Confirmation of Matrix Effects in External and Internal Standard Methods - (HS-GC/MS를 이용한 퇴적물 중 휘발성유기화합물 분석 - 외부 및 내부표준방법에서 매질영향 확인 -)

  • Shin, Myoung-Chul;Jung, Da-som;Noh, Hye-ran;Yu, Soon-ju;Seo, Yong-Chan;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • Volatile Organic Compounds (VOCs) in sediments, which can cause human health problems, have been monitored in Korea since 2014. Measured VOC concentrations can be affected by matrix type and the volatility of target substances. In this study, (1) VOCs volatility and the influence of matrix interference were confirmed, and (2) internal standards (IS) method was applied to improve analytical method. For these purposes, method detection limit (MDL), calibration linearity, precision and accuracy of VOCs were compared in various matrices using the IS. Some of VOCs in sediments showed different peak areas and reduced rates compared to water matrix. It was suggested that adsorption properties of sediments hindered the migration to vapor during heat pretreatment in headspace method. A calibration curve was created in clean sand. Recovery rates for the calibration curve method and IS applying method were 64.1~83.1% and 99.1~119.3%, respectively. Relative standard deviations ranged from 11.1% to 21.6% for the calibration curve method and those for IS ranged 4.7% to 13.7%. In case of real sediment, calibration curve and 1,2-Dichlorobenzene-d4 (ODCB) among IS were not suitable. The average recovery rate of Fluorobenzene (FBZ) increased by 56.4% and Relative Standard Deviation (RSD) by 4.7%. However, the recovery rate was increased in the samples with large values of igniting intensity. This study confirmed that influence of the matrix of VOCs in sediment, and addition of IS materials improved precision and accuracy. Although IS corrects volatilization and adsorption, it is recommended that more than two types of IS should be added rather than single.

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

Usable Capacity for CO2 capture and storage in MOFs (금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구)

  • Park, Seoha;Oh, Hyunchul;Jang, Haenam
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.80-85
    • /
    • 2018
  • Usable capacity is one of the most important parameters for evaluating the performance of an adsorbent for $CO_2$ capture from flue gas streams. In the pressure swing adsorption (PSA) process, the usable capacity is calculated as the difference between the quantity adsorbed in flue gas at high pressure (ca. 20 bar) and the quantity adsorbed at lower purge pressure (ca. 2 bar). In this paper, two stereo-types of metal-organic framework (MOF) were evaluated as an promising adsorbent for $CO_2$ capture: flexible structured MOF (MIL-53) and MOF possessing strong binding sites (MOF-74). The results showed that a total $CO_2$ capture capacity is strongly related to the specific surface area and heat of adsorption, revealing high uptake in MOF-74. However, the usable capacity was more pronounced in MIL-53 due to a structural transition.

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Isolation and Characterization of Bacillus Strains for Biological Control

  • Kim, Han-Soo;Park, Jiyong;Cho, Sung-Won;Park, Kee-Hyun;Lee, Gung-Pyo;Ban, Soo-Jung;Lee, Chang-Roo;Kim, Chung-Sun
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.196-201
    • /
    • 2003
  • The object of this study was to characterize Bacillus strains GB-017 and GB-0356, which produce antifungal substances, especially for plant pathogens. In addition, this study was undertaken to characterize the culture conditions required for the production of antifungal substances and to document some of the properties of the antifungal substance produced by these soil-isolated strains. Strains GB-0365 and GB-017 were found to be bacillus-shaped, gram-positive and motile, and to inhibit Botrytis cineria, Fusarium sp., Pythium sp., and Rhizoctonia solani. Antagonistic activity was maintained up to pH 9.0, and the antifungal activity was stable to heat at 80$^{\circ}C$ for 1 h. Antifungal substances were separated and purified using ion exchange and adsorption columns including WK-I0(H$\^$+) (pH 7.0), HP20 column (pH 3.0) and IPA (pH 3.0). and IPA. Its UV absorption spectrum showed major peaks at 231 and 259 nm, corresponding to polyene and lactone. A fast atom bombardment mass spectrum (FAB MS) showed a highest peak at 441 m/z and major peaks at 192, 205, and 370 m/z.

Anatase TiO2-doped activated carbon fibers prepared by ultrasonication and their capacitive deionization characteristics

  • Kang, Da Hee;Jo, Hanjoo;Jung, Min-Jung;Kim, Kyoung Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.27
    • /
    • pp.64-71
    • /
    • 2018
  • $TiO_2$-doped activated carbon fibers (ACFs) were successfully prepared as capacitive deionization (CDI) electrode materials by facile ultrasonication-assisted process. ACFs were treated with titanium isopropoxide (TTIP) and isopropyl alcohol solutions of different concentrations and then calcinated by ultrasonication without heat-treatment. The results show that a certain amount of anatase $TiO_2$ was present on the ACF surface. The specific capacitance of the $TiO_2$-doped ACF electrode was remarkably improved (by 93.8% at scan rate of $50mV\;s^{-1}$) over that of the untreated ACF electrode, despite decreases in the specific surface area and total pore volume upon $TiO_2$ doping. From the CDI experiments, the salt adsorption capacity and charge efficiency of the sample with TTIP percent concentration of 15% were found to considerably increase by 71.9 and 57.1%, respectively. These increases are attributed to the improved wettability of the electrode, which increases the number of surface active sites and facilitates salt ion diffusion in the ACF pores. Additionally, the Ti-OH groups of $TiO_2$ act as electrosorption sites, which increases the electrosorption capacity.

칼륨 이온 치환 제올라이트 L 중의 C$_1$-C$_5$ 알칼 및 벤젠의 열역학적 특성

  • Moon Sung Doo;Kim Yang;Kim Un Shik;Choi dai Ung
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.389-395
    • /
    • 1990
  • The potential energy of interaction of alkanes C$_1$-C$_5$ and benzene with K$^+$ ion exchanged zeolite L was calculated by applying the atom-atom approximation. For benzene molecule, the atomic charges used for the potential energy calculations were derived from the experimental enthalpy of K+ ion-benzene interaction. The thermodynamic characteristics of the adsorption of the adsorbate molecules (the changes in the internal energy and the isosteric heats at very low coverages) and the potential maps of the adsorbate molecules were determined on basis of the calculated values of potential energy. The calculated values of the isosteric heats agreed fairly well with experimental data for alkanes C$_1$-C$_5$, whereas the calculated isosteric heat for benzene was somewhat greater than that for the experimental value.

  • PDF