• 제목/요약/키워드: Heat load ratio

검색결과 185건 처리시간 0.028초

디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석 (Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine)

  • 김상암;왕우경
    • 수산해양기술연구
    • /
    • 제55권4호
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

열펌프 시스템의 규모 결정을 위한 온돌난방부하 특성 (Characteristics of Ondol Heating Load for the Determination of Heat Pump Power)

  • 노정근;백은기;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.217-224
    • /
    • 2003
  • To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.

부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석 (A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method)

  • 김동준;강병하;장영수
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

시설원예의 지열냉·난방시스템 경제성 분석 (Economic Analysis of Cooling-Heating System Using Ground Source Heat in Horticultural Greenhouse)

  • 류연수;주혜진;김진욱;박미란
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.60-67
    • /
    • 2012
  • Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.

가공열처리한 Al-Zn-Mg 합금의 피로균열 성장거동에 미치는 하중비의 영향 (Effects of Load Ratio on Fatigue Crack Growth in a TMT Treated Al-Zn-Mg Alloy)

  • 변응선;김송희
    • 열처리공학회지
    • /
    • 제2권4호
    • /
    • pp.19-26
    • /
    • 1989
  • Fundmental fatigue crack propagation tests with C-T type specimens were conducted at various load ratios (R) such as 0.1, 0.3 and 0.5 in T6 and Thermomechanically treated (TMT) conditions of 7039 Al alloy. Better mechanical properties from monotonic test as well as fatigue crack propagation were obtained by TMT process owing to uniform distribution of fine microstructures and non-existence of precipitation free zone (PFZ). Through the measurement of Kop and ${\Delta}K$ at various R the concept of effective stress intensity factor range ratio, U was reviewed to asses the load ratio effect on fatigue crack propagation. A relationship between U and variables such as ${\Delta}K$ and R was obtained empirically. This may enable us to predict ${\Delta}K_{eff}$ that is of critical importance for prediction of fatigue crack propagation rate.

  • PDF

$MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구 (A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump)

  • 권오경;윤재호;김정욱;이진호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

실내 부하 변동에 따른 탄화수소계 냉매를 이용한 히트펌프 성능에 관한 실험적 연구 (An Experimental Study on Performance of Heat Pump System Using Hydrocarbon Refrigerants by Changing Indoor Load)

  • 김재돌;성광훈;정석권;윤정인;이호생
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.204-210
    • /
    • 2006
  • This study presents heat pump system characteristics using hydrocarbon refrigerants as alternative refrigerant for R-22 with respect to the variation of indoor load. Pure R-22 and R-290. R-600a, R-1270 were considered as working fluids The experimental apparatus was constructed to investigate the performance of heat pump using the air as a heat source. The performance were calculated based on compression shaft work. refrigeration capacity. pressure ratio, discharge temperature and COP. The experimental results show that the COP and refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. Through the above. hydrocarbon refrigerants are good alternatives in the heat pump system for R-22.

가스터빈 열병합발전 시스템의 설계점 설정 및 부분부하 성능해석 (Analysis of Design and Part Load Performance for gas Turbine Cogeneration Systems)

  • 김동섭;노승탁
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2167-2176
    • /
    • 1994
  • This paper presents some useful design criteria for the turbine cogeneration system through both the design and off-design analysis. Comparative analysis of the part load performance is carried out for several gas turbines which have different design parameters represented by the turbine inlet temperature and pressure ratio. It is shown that the variation in part load efficiency considerably depends on the design parameter. The off-design operation of the heat recovery steam generator is simulated by introducing adequate assumptions for the heat transfer process. It is turned out that the design parameters of heat recovery steam generator should be determined by considering the favorable operation at the off-design conditions.

인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향 (The effect on the seasonal performance of an inverter compressor with higher and lower operating range)

  • 박윤철;하도용;민만기
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF

부하종류에 따른 회로의 누설전류 및 절연저항 특성 연구 (Study on Characteristics of Leakage Current and Insulation Resistance for a Circuit According to Load Types)

  • 한경철;최용성
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.364-369
    • /
    • 2019
  • 본 논문에서는 전기재해를 일으킬 수 있는 요소를 미리 제거하기 위해 전등부하, 전열부하, 동력부하를 대상으로 누설전류와 절연저항을 측정하여 분포비율과 누적비율을 비교하고 분석하여 보다 효과적이고 신뢰성 있는 누설전류 검출방법을 찾고자 하였다. 누설전류와 절연저항의 적합 비율 차이는 전열부하 32.5%, 전등부하 22.8%, 동력부하 2.2%의 순으로 나타났으며, 누설전류계가 낮은 적합 비율을 나타내었으며, 누설전류계는 측정방법에 따른 오차와 용량성 누설전류 및 영상전류가 포함되어 있기 때문으로 생각되었다.