• Title/Summary/Keyword: Heat lamp

Search Result 181, Processing Time 0.024 seconds

Improved Heat Lamp for Preventing Arterial Spasm after Microvascular Surgery (미세혈관 수술 후 혈관 연축의 예방을 위한 개선된 온열전등)

  • Ahn, Sung-Min;Hwang, So-Min;Hu, Eun-Suk;Park, Jung-Mi;Park, Kyung-A;Oh, Jin-A
    • Archives of Reconstructive Microsurgery
    • /
    • v.17 no.2
    • /
    • pp.120-125
    • /
    • 2008
  • Purpose: Heat therapy by heat lamp after microvascular surgery is being used for preventing blood vessels's contraction and blood-flow's disturbance. As usually, incandescent lamp has been used. But there have been several problems and need for improvement in the existing heat lamp treatment. So we would like to introduce improved heat lamp to keep an appropriate temperature and intensity of illumination. Methods: The existing heat lamps are the ones of general light stands covered with newspaper, having 60 watt light bulb of incandescence and lampshade made of aluminum. We have tried to improve shortcomings of the existing heat lamps by enlarging the size of aluminum lampshade and attaching a curtain that can block heat and light. We conducted a comparative study between the existing and improved heat lamps. Under the assumption that there are several affected parts, we have also measured the distance from heat lamp to patients' eye region and then intensity of illumination. Result: The target temperature of surface was realized in 11 minutes with the maximum temperature reaching at 36.6 degrees C in 28 minutes at the existing heat lamp while the target temperature reached in 7 minutes with the maximum temperature reaching at 39.0 degrees C in 17 minutes at the improved heat lamp. The existing and improved heat lamp showed 38 lx and 0.1 lx of intensity of lumination, respectively. Conclusion: Using improved heat lamps, we can keep an appropriate temperature and we think we can make contribution to patients' treatment by making them and their neighbors able to sleep with minimized disturbance thanks to low intensity of illumination secured by blocking light.

  • PDF

A Study on Comparions of Ice Bag and Heat Lamp for the Relief of Perineal Discomfort. (회음부 불편감 완화를 위한 냉요법과 온요법의 비교연구)

  • 남혜경;박영숙
    • Journal of Korean Academy of Nursing
    • /
    • v.21 no.1
    • /
    • pp.27-40
    • /
    • 1991
  • Perineal discomfort from episiotomy continues to be a problem for many postpartum women. The purposes of this study were to compare the effect of ice bag and heat lamp for the relief of perineal discomfort and to identify the sustaining time of each effect. Forty women took ice bag and heat lamp with random assignment of initial therapy. Women rated the degree of perineal discomfort before and after each therapy and at half-hour, tow-hour and four-hour intervals after each therapy. A discomfort scale, 18cm graphic rating scale, was used. The results of the study were as follows ; 1. The ice bag group showed significantly lower discomfort score than the heat lamp group at the half- hour and two - hour intervals after therapy. 2. The ice bag group showed significantly lower discomfort score for 4hrs after than before therapy, but the heat lamp group did not show significantly lower discomfort score. 3. Neither the type of episiotomy nor the previous experience of heat therapy influenced on the effect of ice bag relieving the perineal discomfort. Therefore ice bag was significantly mere effective in relieving perineal discomfort than heat lamp. Subjective responeses of patients who took both therapy were very favorable toward ice bag. I suggested that nurses should provide women with adequate information about the use of ice bag and encourage to apply ice bag instead of heat lamp after episiotomy in order to promote the relief of perineal discomfort and the healing of perineal wound.

  • PDF

Predicting of Ignition Time and Critical Distance for Ignition of Douglas fir by Radiant Heat of Incandescent Lamp (백열전구 복사열에 의한 미송판의 발화 임계거리 및 발화시간 예측)

  • Lee, Heung-Su;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.18-25
    • /
    • 2016
  • The incandescent lamp is an electric light fixture with a tungsten filament heated to a high temperature, by passing an electric current through it, until it glows with visible light. The hot filament is protected from oxidation with a glass bulb that is filled with inert gas. The incandescent lamp has fire risk when combustible materials are close to its glass bulb. Because its lamp has the property which converts 90~95 percents of the electric power to heat energy. 2015 national fire statistics show that fires caused by lighting fixtures were 652 cases, and incandescent lamps(44 cases) and halogen lamps(53 cases) accounted for 15 percents in those of high heating light fixtures. Since incandescent lamp fires account for about 45 percents in the high heating light fixture, we could not overlook the fire risks by the incandescent lamp. Although many studies related with those have been conducted, incandescent lamp fires are continuously occurred. This study was carried out to study the fire risk of ignition of wood due to radiant heat of incandescent lamp. Radiant heat flux of the incandescent lamp was predicted by applying point source model, and critical distance for ignition of wood was calculated by applying integral model. The results from this study could applied to fire prevention activities related to light bulb, and it could be used in fire cause investigations related to radiant heat of incandescent lamp.

A Study on the Numerical Analysis of Heat Sink for Radiant Heat of Automotive LED Head Lamp (자동차 LED Head Lamp의 방열을 위한 Heat Sink의 수치해석적 연구)

  • Choi, Byung-Hui;Kim, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4398-4404
    • /
    • 2012
  • This thesis was conducted a numerical analysis on the radiant heat performance according to factors of design of heat sink for cooling of the automotive LED head lamp. The heat sinks were designed with 5 different types to fit the limited internal space by formula based on an existing product (Type 1). Designed heat sinks of five types were analyzed by ANSYS CFD V12.1, and the analysis results were compared with the existing type. The results of simulation were analyzed temperature distribution and average temperature, air flow characteristic, heat flux etc. This thesis was researched on the correlation of the cooling performance according to the heat sink structure and the fin shape. Through numerical analysis, could be confirmed heat sink Type 2 as the best results.

Convergence Study due to the Configuration of Radiant Heat Panel of Automotive LED Heat Lamp (자동차 LED 전조등 방열판 형상에 따른 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • The Nowadays, LED head lamp has been used instead of halogen lamp at automotive head lamp. Inside this LED head lamp, there is a radiant heat panel which has the role to have the considerable influence upon LED life. As the radiant heat panel absorbs the heat from medium, the overheat of diode can prevented. in this study, the heat transfer and thermal stress are investigated according to the configuration of radiant heat panel. As the result of this study, the heat at model 1 decreases in comparison with model 2 and model 1 in design has the durability more than model 2. As the convergence technique is grafted on the design of radiant heat panel, the esthetic sense can be shown at the automotive head lamp.

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

Development of a 250-W high-power modular LED fish-attracting lamp by evaluation of its thermal characteristics

  • Lee, Donggil;Lee, Kyounghoon;Pyeon, Yongbeom;Kim, Seonghun;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Recently LED fish-attracting lamps have been more widely used in fisheries as low-cost and high-efficiency fishing gear, and development of long-life high-efficiency lamps is required through the design of LED packages to optimize heat resistance. This study developed an improved LED fish-attracting lamp with excellent heat performance, which was verified using a numerical model. Heat-resistance design factors such as the heat-radiation fin shape, PCB type, and LED chip count were investigated and optimized. Comparison with a commercial 180-W LED fishing lamp showed that the increase in initial temperature was 40% higher than that of the surrounding LED chip because of design errors in contact thermal resistance. The 250-W LED lamp developed in this study has a characteristic with thermal rising in linearly stable according to the heat source. In addition, luminance efficiency was improved by 20-65% by using flow-visualization simulation. A decrease of 45% in total power consumption with a fuel-cost reduction of over 55% can be expected when using these optimized heat release design factors.

A Study on Heat Simulation for Heat Radiation in 150W LED (150W LED등기구 방열을 위한 열 해석에 관한 연구)

  • So, Byung Moon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.79-85
    • /
    • 2016
  • For long life time and high efficiency, not necessary in improvement of LED chip structure, but also improve heat radiation for decrease heat in LED chip. In this study, efficiency decline factor has been investigated in LED lamp as study heat characteristic, luminance flux and heat resistance. When LED lamp temperature was increased, about 7% loss of luminance flux. In consequence of temperature analysis, width of fin was the most important factor of heat radiation. As a result, secure the enough heat path is very important factor of LED lamp design.

A Study on LED Fluorescent Lamp applying Circuit Driven Method to Tubular LED Lamp Converter (직관형 LED램프 컨버터에 회로구동방식을 적용한 LED 형광등 연구)

  • Yang, Byongmoon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • In this paper, we perform a study on LED Fluorescent Lamp applying Circuit Driven Method to Tubular LED Lamp Converter. The energy efficiency of LED fluorescent lamp converter requires exceptional protection circuit design, circuit design and structure, because it can not take advantage of Heat-sink structure of the heightened degree Reflector for Fluorescent Lamp. In this paper, we performed a study on LED fluorescent lamp applying circuit driven method to tubular LED lamp converter, Also, we designs LED lamp and converter which can supply DC power common commercial power source.