• Title/Summary/Keyword: Heat index

Search Result 864, Processing Time 0.025 seconds

An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head (스프링클러헤드 감열부의 열적 특성에 관한 연구)

  • You, Woo-Jun;Moon, Hyo-Jun;Youm, Moon-Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.79-84
    • /
    • 2012
  • In this study thermal characteristics of heat-responsive element considering conduction, convection and rate of change of element using Response Time Index (RTI) applied to sensitivity test of sprinkler head at home and aborad are theoretically investigated. Analytic solution of temperature distributions with radial direction and time is obtained form energy transport equations, non-homogeneous 2th order partial differential equation, applying to constant wall temperature and symmetric condition in order to analyze thermal characteristics of heat-responsive element for circular cylindrical geometry. Base on the results, the analytic method of this study is fundamental data to practical use for sensitivity test of sprinkler head and design of heat-responsive element.

An Analysis of Thermal Environment Change according to Green Roof System (옥상녹화 조성에 따른 열환경 변화분석)

  • Park, Ji-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Shimizu, Aki
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

A study on PDSI improvement for drought monitoring: focused on the estimation method of potential evapotranspiration (가뭄감시를 위한 파머가뭄지수 개선 방안 연구: 잠재증발산량 산정 방법을 중심으로)

  • Moon, Jang Won;Kang, Jae Won;Cho, Young Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.863-875
    • /
    • 2017
  • In this study, the effects of potential evapotranspiration method on drought index results were evaluated using SC-PDSI. Monthly heat index method, Penman-Monteith method, and Hargreaves equation were used as potential evapotranspiration method. SC-PDSI was calculated using three potential evapotranspiration method at 56 stations and compared the results. As a result, it was confirmed that the results by Penman-Monteith method and Hargreaves equation showed similar SC-PDSI calculation results without much difference, and the result by monthly heat index method showed a relatively large difference. It was confirmed that the results of SC-PDSI and drought situation judgment for the period of spring and winter season showed a big difference by the month. In conclusion, when calculating PDSI in Korea, using Penman-Monteith method and Hargreaves equation will be able to express the drought situation well.

A Study on the Burn-out Printing of Cellulose-blend Velvet (셀룰로오스계 파일직물의 탄화가공)

  • 김호정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.757-763
    • /
    • 1999
  • The burn-out technique is used to result in the velvet cloth being patterned in open and solid areas by carbonize the cellulose fiber. It is examined how to burn out the cellulose part of the velvet without damage of the other part. The print paste indalca solution is mixed with sodium hydrogensulfate and lycerine and then screen-printed on the back side of the velvet. The effects of process conditions such as concentration of sodium hydrogensulfate dry heat fixation temperature and time pull no. and glycerine contents on the properties of ground farics were investigated. The yellowness index and the breaking load of silk ground fabrics afected by the process conditions especially concentration of sodium hydrogensulfate dry heat fixation temperature.

  • PDF

A Study on Response Time Index and Operating Time for Fusible Link Sprinkler Head (용융형 스프링클러 헤드의 응답시간 지수 및 작동시간에 관한 연구)

  • 이병곤;태순호
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.34-44
    • /
    • 1991
  • In this study, the general solution of heat balance equation including conductive heat loss were suggested and were determined the constants with the results of experiment in hot tunnel in order to derive the general equation for the response time and to investigate the response time index which represent the characteristics of response of sprinkler head in actual fires. Two types of test were considered, the plunge test, in which the air temperature is represented by a step function, and the ramp test, in which the air temperature increases at a constant rate. As a result, simple equations were derived, which can be predicted the response time for the ramp type fire with the rate of temperature rise and gas velocity, for the plunge type fire with temperature and gas velocity. Also other useful data, such as the effective temperature, time constant, response time index and conduction parameter were obtained.

  • PDF

A Study of Thermal Performance Evaluation Index for Building (건물의 열성능 평가 지표에 관한 연구)

  • Kim, Mi-Hyun;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This study intends to the adequacy inspection of the room temperature variation rate that is available in the building heat performance evaluation index, so we performed the sensitivity analysis about the room temperature variation rate and the energy consumption in the room. For these purpose, we supposed the models which are composed of the various window area, insulation thickness and ventilation rate. Then we analyzed the simulation using the ESP-r and Seoul weather data. In this research, the pattern of the increasing & decreasing rate of annual load according to the change of the various design factors is similar to the pattern of increasing & decreasing rate of not the K-values but the room temperature variation rate. Also we derive the optimum value of the various design factors and the room temperature variation rate in this analysis model. Further study is to be required the development of convenient tool to use in the real design.

항균처리를 한 공조기기의 항균성능 평가방법과 평가결과

  • Miura, Kunio;Takatsuka, Takesi;Yanagi, U;Yamazaki, Shoji
    • Air Cleaning Technology
    • /
    • v.22 no.2
    • /
    • pp.40-49
    • /
    • 2009
  • Aluminum thin plate coated with epoxy resin containing about 20wt% brass powder, was applied to fins of heat exchanger. We carried out a series of detailed examinations to evaluate the anti-bacterial performance of the plate and heat exchanger (fan coil unit). In the presence of water or moisture, copper ions which have an anti-bacterial ability eluted from brass powder and showed sufficient effects on many kinds of bacteria. We also evaluated the anti-bacterial performance quantitatively by use of the index API (Anti-bacterial Performance Index) which has already been proposed by authors.

  • PDF

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.

Quality Comparison of Rice Cooked on Heat Plate, Induction Heat, and Heat Plate with Pressure (취반기의 가열 방식별 취반미의 특성 비교 분석)

  • Kim, Sang Sook;Chung, Hae Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.464-472
    • /
    • 2017
  • The qualities of rice cooked on heat plate, induction heat and heat plate with pressure, were investigated. The weight, volume, water soluble index (WSI), hydration by SEM (Scanning Electron Microscope), and gelatinization by DSC (Differential Scanning Calorimetry), as well as the consumer acceptability of cooked rice were analyzed. The weight, volume and WSI of rice cooked on heat plate with pressure were higher than those of rice cooked on heat plate and induction heat. The rice cooked on heat plate with pressure also showed higher degree of hydration and gelatinization, and lower degree of enthalpy of gelatinization than the rice cooked on heat plate and induction heat for 5~15 min. The consumer acceptability revealed that the odor, appearance, taste, texture and overall acceptance of rice cooked on induction heat were better than those of rice cooked on heat plate and heat plate with pressure. During storage in a cooker for 0~12 h, there was a decrease in the consumer acceptability of cooked rice. Overall results indicate that the qualities of rice cooked on induction heat and heat plate with pressure were higher than those of rice cooked on heat plate.

Heatwave Vulnerability Analysis of Construction Sites Using Satellite Imagery Data and Deep Learning (인공위성영상과 딥러닝을 이용한 건설공사현장 폭염취약지역 분석)

  • Kim, Seulgi;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.263-272
    • /
    • 2022
  • As a result of climate change, the heatwave and urban heat island phenomena have become more common, and the frequency of heatwaves is expected to increase by two to six times by the year 2050. In particular, the heat sensation index felt by workers at construction sites during a heatwave is very high, and the sensation index becomes even higher if the urban heat island phenomenon is considered. The construction site environment and the situations of construction workers vulnerable to heat are not improving, and it is now imperative to respond effectively to reduce such damage. In this study, satellite imagery, land surface temperatures (LST), and long short-term memory (LSTM) were applied to analyze areas above 33 ℃, with the most vulnerable areas with increased synergistic damage from heat waves and the urban heat island phenomena then predicted. It is expected that the prediction results will ensure the safety of construction workers and will serve as the basis for a construction site early-warning system.