• Title/Summary/Keyword: Heat inactivation

Search Result 127, Processing Time 0.034 seconds

Pasteurization Characteristics of Makgeolli (Korea Rice Wine) with Various Initial Concentrations of Yeasts (막걸리 초기 효모 농도에 따른 살균특성)

  • Lee, Jin-Won;Chung, Yoon-Kyung;Park, Jang-Woo
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.633-637
    • /
    • 2013
  • There is an increasing consumption of Makgeolli in both domestic and foreign markets due to a high interest in Korean traditional alcoholic beverages. However, currently, a standardized system of manufacturing, storing and circulating Makgeolli is not available. Therefore, manufacturing the constant quality of finished products is hardly achieved due to the uncertified quality index of Makqeolli. In particular, quality changes occur as a result of variable initial load of microorganisms during shelf life. Eight different commercially available brands of Makgeolli were obtained, and their initial concentrations of yeasts were measured. One brand with the highest concentration was chosen, and the variable initial concentrations were prepared at a concentration of $10^6{\sim}10^8$ yeast CFU/ml. These Makgeolli samples were heat-treated at 65, 70, 75 or $80^{\circ}C$. It was shown that temperatures higher than $75^{\circ}C$ were needed in order to pasteurize Makgeolli properly. In addition;it is considered that controlling the microorganisms by a standardized system for the processing analysis would improve the quality of Makgeolli.

Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus thermophilus HJ6

  • Kim, Hyun-Jung;Kim, Ae-Ran;Jeon, Sung-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.513-517
    • /
    • 2010
  • A thermostable trehalose synthase (TtTSase) from Thermus thermophilus HJ6 was immobilized on chitosan activated with glutaraldehyde. The yield of immobilization was evaluated as 39.68%. The optimum pH of the immobilized enzyme was similar to that of the free enzyme. However, the optimal temperature ranges were shifted by about $4^{\circ}C$ owing to better thermal stability after immobilization. The half-life of heat inactivation for free and immobilized enzymes was 5.7 and 6.3 days at $70^{\circ}C$, respectively, thus showing a lager thermostability of the immobilized enzyme. When tested in batch reaction, the immobilized enzyme retained its relative activity of 53% after 30 reuses of reaction within 12 days, and still retained 82% of its initial activity even after 150 days at $4^{\circ}C$. A packed-bed bioreactor with immobilized enzyme showed a maximum yield of 56% trehalose from 100 mM maltose in a continuous recycling system (bed volume: 10 ml) under conditions of pH 7.0 and $70^{\circ}C$.

Sulforhodamine B Assay to Determine Cytotoxicity of Vibrio vulnificus Against Human Intestinal Cells

  • Lee, Byung-Cheol;Choi, Sang-Ho;Kim, Tae-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.350-355
    • /
    • 2004
  • Sulforhodamine B (SRB) assay is a rapid, sensitive, and inexpensive method for measuring cell proliferation and chemosensitivity. However, the lactate dehydrogenase (LDH) release assay is generally used to measure cytototoxicity of infectious microorganisms against host cells. In this study, we investigated the possibility of applying the SRB assay to determine cytotoxicity for infectious microorganisms, and compared the results with those obtained by the LDH release assay. We used Vibrio vulnificus as a model of infectious microorganisms. The SRB assay showed that V vulnificus strongly induced cytotoxic activity against human intestinal cells, Caco-2 and INT-407 cells. The degree of cytotoxicity closely correlated with infection time and number ratios of V. vulnificus to intestinal cells (MOI, multiplicity of infection). Furthermore, cytotoxicity values obtained by SRB assay correlated well with results obtained by the LDH release assay, and both assays gave a linear response with respect to MOI Heat-inactivation of V. vulnificus for 35 min at $60^{\circ}C$ did not induce cytotoxic activity, indicating that viability of V. vulnificus is crucial for cytotoxic activity against intestinal cells. Although both assays are suitable as cytotoxicity endpoints, the SRB assay is recommended for measuring cytotoxicity of infectious microorganisms against host cells because of its significantly lower cost and more stable endpoint than the LDH release assay.

Emerging Pathogenic Bacteria: Mycobacterium avium subsp. paratuberculosis in Foods

  • Kim, Jung-Hoan;Griffiths, Mansel W.
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • Mycobacterium avium paratuberculosis (MAP), the cause of Johne's disease in animals, may be a causative agent of Crohn's disease (CD) in humans, but the evidence supporting this claim is controversial. Milk, meat, and water could be potential sources of MAP transmission to humans. Thus, if the link between MAP and Crohn's disease is substantiated, the fact that MAP has been detected in retail foods could be a public health concern. The purpose of the present study was to review the link between MAP and CD, the prevalence of MAP in foods, heat inactivation, control of MAP during food processing, and detection methods for MAP. Although MAP positive rates in retail milk in nine countries ranged from 0 to 2.9% by the culture method and from 4.5 to 15.5% by PCR, high temperature short time pasteurization can effectively control MAP. The effectiveness of pasteurization to inactivate MAP depends on the initial concentration of the MAP in raw milk. Development of highly sensitive and specific rapid detection methods for MAP may enhance investigation into the relationship between MAP and CD, the prevention of the spread of MAP, and problem-solving related to food safety. Collaboration and efforts by government agencies, the dairy industry, farmers, veterinarians, and scientists will be required to reduce and prevent MAP in food.

Antimicrobial Activities of Commercially Available Tea on the Harmful Foodborne Organisms (식품유해균에 대한 차류 추출물의 항균효과)

  • 오덕환;이미경;박부길
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 1999
  • Use of chemical preservative for controlling harmful microorganisms in food products has been debated due to public concerns about food quality because of perceived toxic and carcinogenic potential. Thus, use of non toxic natural antimicrobial agents has become essential. This study was investigated to determine the antimicrobial activity of water or ethanol extract of commercially available tea, and of solvent fractionated ethanol extracts obtained from steamed green tea. Both of water and ethanol extracts of green tea(steamed or roasted), oolong tea and black tea exhibited strong antimicrobial activity against gram positive and negative bacteria, but not effective against yeast and mold. Also, antimicrobial activity of ethanol extract of 4 different kinds of tea was stronger than that of water extract. Among 4 different tea, ethanol extract of steamed green tea was further fractionated. One thousand g/disk buthanol extract had the strongest antimicrobial activity against bacteria and mold. The concentration of the antimicrobial activity of buthanol extract in tested microorganisms ranged from 125~1000 g/disk except for Rhizopus javanicus. Antimicrobial activity of buthanol extract of steamed green tea was not destroyed by heating at 100oC for 60 min and at 121oC for 15 min, which is very stable over heat treatment. The inhibitory effect of the buthanol extract on the growth of Listeria monocytogenes and Staphylococcus aureus was investigated. Growth of both strains was started in the presence of 250 and 500 g/ml after 12 and 24 hour respectively, whereas complete inactivation of both strains was occurred in the presence of 1000 g/ml.

  • PDF

Combined Effect of Agrimonia pilosa Ledebour Extract and NaCl for Control of Escherichia coli O157:H7 (Escherichia coli O157:H7의 제어를 위한 선학초(Agrimonia pilosa Ledebour) 추출물과 NaCl의 병용효과)

  • Park, Shin;Kwon, Oh-Jin
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.168-173
    • /
    • 1998
  • Gamma irradiated and non-irradiated Agrimonia pilosa Ledebour were extracted by 70% ethanol. The combined effects of the Agrimonia pilosa Ledebour extract and NaCl on survival of Escherichia coli O157:H7 in tryptic soy broth were investigated. E. coli O157:H7 decreased ca 1 log cycle by the addition of 2% sample extract, and the anthbacterial activity was increased as the concentration of sample extract was increased. The irradiation effect of the sample on antibacterial activity was not observed. On the treatment of NaCl alone, E. coli O157:H7 was inactivated (ca 3~4 log cycle reduction within 48 hr) in more than 7% NaCl. The higher inactivation(ca 5 log cycle reduction within 48 hr) occurred in the presence of 2% sample extract and 5% NaCl than in the addition of each alone. The extracted antibacterial substance was stable in the pH range of 4.0 to 7.0, heat treatment at 121$^\circ C$ for 15 min, and freezing at -18$^\circ C$ and thawing at 37$^\circ C$. There fore, the sample extract, would substantially increase the food-safety in terms of E. coli O157:H7.

  • PDF

Effects of Gamma Irradiation on Queso Blanco Cheese (퀘소블랑코 치즈의 감마선 조사 처리 효과)

  • Jeong, Seok-Geun;Noh, Young-Bae;Shin, Ji-Hye;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Ju-Woon;Jo, Cheor-Un;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Effects of gamma irradiation on chemical, microbiological, and immunological changes of Queso Blanco cheese were investigated. Although Queso Blanco cheese was made by heat pasteurization at 85$^{\circ}$C and addition of acid without lactic starter culture, total bacterial counts and lactic acid bacterial counts of control cheese were 7.65${\pm}$0.04 and 7.64${\pm}$0.02 log CFU/mL, respectively. It was thought that this microbial growth was due to the incomplete inactivation of raw milk by the heat treatment, resulting into growth during the pressing and the drying process. It demonstrated the possibility that if heat- and acid-resistant hazard microbes are present in raw milk, they can grow during the processes. Lactic acid bacterial counts of the irradiated cheese were 5.45${\pm}$0.02 log CFU/mL at 1kGy, 2.12${\pm}$0.12 log CFU/mL at 2kGy, and not detected at 3kGy or higher doses. The reduction of antigenicity by gamma irradiation was not found. It might be caused by the fact that most whey proteins of milk, a major antigen in milk, were already denaturated by heat process and removed during the draining.

  • PDF

Application Potential of Hurdle Technology by Combination of Bacteriocin Produced by Lactobacillus brevis DK25 and Potassium Benzoate (Lactobacillus brevis DK25의 박테리오신과 안식향산칼륨과의 혼용에 의한 Hurdle Technology 적용 가능성)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.364-374
    • /
    • 2011
  • Lactobacillus brevis DK25 isolated from Dongchimi was identified by physiological and biochemical tests and 16S rDNA sequence analysis. Bacteriocin of L. brevis DK25 exhibits inhibitory activity against Enterococcus faecalis and Listeria monocytogenes when using agar well diffusion method. Maximal production of bacteriocin was reached in the beginning of the stationary phase, and inhibitory activity declined after the late stationary phase. This result suggested that bacteriocin was produced in a growth-associated manner. Complete inactivation of bacteriocin activity was observed after treatment with protease, but the activity was stable between pH 4-9 and heat resistant (30 min at $100^{\circ}C$). Bacteriocin showed a concentration-dependent antimicrobial activity against L. monocytogenes KCTC 3569. Moreover, the application experiment showed that combination of bacteriocin (320 AU/ml) with potassium benzoate (0.05%) could significantly reduce the counts of L. monocytogenes KCTC 3569 in mayonnaise during storage at 4 or $25^{\circ}C$ for 10 days. Thus, bacteriocin from L. brevis DK25 may be used for hurdle technology by combination with potassium benzoate in order to increase pathogenic bacteria inactivation in food processing and food safety control.

Thermal Inactivation Parameters of Peroxidase in Flammulina velutipes and Lyophyllum ulmarium (팽이 및 만가닥버섯에서 추출한 peroxidase의 열 불활성화 특성)

  • Lee, Kyun;Kim, Kong-Hwan;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1067-1072
    • /
    • 2002
  • Peroxidase was used as a standard enzyme to determine optimum blanching conditions of Flammulina velutipes and Lyophyllum ulmarium. Crude peroxidase extracted from raw mushrooms had maximum activity at $10{\sim}15^{\circ}C$ and pH 5.5 (50 mM, potassium phosphate buffer) using substrates of $H_2O_2$ and p-Phenylendiamine. Thermal inactivation of the crude peroxidase followed the first-order kinetics. The activation energy and z value of the crude peroxidase for F. velutipes were 59.58 kcal/mol and $9.0^{\circ}C$, whereas were 43.05 kcal/mol and $12.4^{\circ}C$ for L. ulmarium, respectively. On the basis of thermal kinetics parameters obtained, the optimum blanching conditions for F. velutipes and L. ulmarium were 1 min at $70^{\circ}C$ and 5 min at $80^{\circ}C$, respectively. Activation energies and z values of peroxidases extracted from heat-treated mushrooms were 7.97 and 6.55 kcal/mol, and $59.8^{\circ}C\;and\;74.1^{\circ}C$ for F. velutipes and L. ulmarium, respectively.

Changes in Microbial Counts, Enzyme Activity and Quality of Foxtail Millet Yakju Treated with High Hydrostatic Pressure During Storage (초고압 처리한 좁쌀약주의 저장 중 미생물수, 효소활성 및 품질변화)

  • 임상빈;좌미경;목철균;박영서
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.576-581
    • /
    • 2004
  • Foxtail Millet Yakju were treated with heat ($65^{\circ}C$/15 min) or high hydrostatic pressure ($25^{\circ}C$ (RT) and $65^{\circ}C$ (HT)/400 MPa/10 min), and stored for 64 days at l$0^{\circ}C$, $25^{\circ}C$ and 37$^{\circ}C$. Changes in microbial counts, enzyme activity and quality of Yakju during storage were measured. Total viable cells were about 10$^2$ CFU/mL, and remained almost constant during storage at l$0^{\circ}C$ and $25^{\circ}C$, while decreased significantly at 37$^{\circ}C$, and undetected after 55 days of storage in heat- and pressure(RT)-treated, but after 25 days in pressure(HT)-treated Yakju. Lactic acid bacteria and yeast in heat- and pressure-treated Yakju were not detected during storage. The relative activities of a -amylase in heat- and pressure(RT)-treated were more than 100%, while those in pressure(HT)-treated were less than 40% during storage of 64 days at l$0^{\circ}C$. However, at $25^{\circ}C$ and 37$^{\circ}C$ the relative activities in untreated and pressure(RT)-treated were decreased greatly and then reached at the point of the activities of heat- and pressure(HT)-treated. The relative activities of glucoamylase in untreated and pressure(RT)-treated were decreased as the increase of the storage temperature during storage, while those in heat- and pressure(HT)-treated increased slightly as the increase of storage period at 1$0^{\circ}C$ and $25^{\circ}C$, and had no change at 37$^{\circ}C$. pH in heat- and pressure-treated had almost no change. Turbidity and reducing sugar in heat- and pressure-treated increased as the increase of storage temperature during storage.