• Title/Summary/Keyword: Heat generation rate

Search Result 345, Processing Time 0.032 seconds

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.

An analysis on the characteristics of regasification system for LNG-FSRU depending on the changes in performance with vaporization and temperature of the heat source (LNG-FSRU용 재기화 시스템의 열원 온도 및 기화성능의 변동에 따른 시스템 특성분석)

  • Lee, Yoon-Ho;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.625-631
    • /
    • 2014
  • In this study, according to increase of thermoelectric power plants that use LNG, LNG-FSRU(Floating-Storage and Regasification Unit) appeared and it is installed on the Topside in order to deliver in a gaseous state to consumers who are in the shore. This study about the study on the characteristics analysis of the system depending on changes in performance with the vaporization and temperature of the heat source. For the characteristics analysis of the system, we devided vaporization method into Ethylene glycol water vaporization method and sea water as a heat source. Then the system that can vaporize 200ton per hour of LNG of $-157.9^{\circ}C$ and 10,400kPa was configured, and according to the temperature of supplied sea water, required minimum flow rate value was calculated. Also in case of using Ethylene glycol Water as a vaporization method, providing for regional and seasonal factors such as decrease of temperature of water. The system is configured by adding a steam boiler of $174.5^{\circ}C$, 775kPa as heat source. The generation amount of the steam required according to the performance of the vaporizer compared to the water temperature changes in the steam boiler and the amount of required evaporative performance due to changes in the quantity of steam and Ethylene glycol Water was confirmed.

Estimation of THI Index to Evaluate Thermal Stress of Piglets in Summer Season (하절기 자돈 고온 스트레스 평가를 위한 THI 지수 모의)

  • Ha, Taehwan;Kwon, Kyeong-seok;Lee, In-bok;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sangyeon;Choi, Hee-chul;Kim, Jong-bok;Lee, Jun-yeob;Jeon, Jung-hwan;Woo, Saemee;Yang, Ka-young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • Thermal stress of pigs causes decreased feed consumption and weight gain rate, immunosuppression, reproductive disorders, and increased mortality. The concept of the temperature-humidity index (THI) has been widely used to evaluate the degree of thermal stress of pigs. However, use of this concept is strongly restricted for animals living in the enclosed facilities. In this study, Building Energy Simulation (BES) technique was used to realize the energy flow among outside weather conditions, building materials, and animals. Especially, mechanisms of sensible and latent heat generation from pigs according to surrounding air temperature and their weight were designed to accurately evaluate the THI values inside the pig house. The THI values computed by the BES model were compared to those calculated by method of the report (NIAS, 2016), the model of this study predicted the start date of heat stress about 9~76 days earlier compared to the NIAS model. Results of the BES model also showed higher frequencies of the THI above the THI threshold for pigs, indicating that conventional model has a possibility of underestimating the degree of heat stress of pigs.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Fabrication of a Micro Electromagnetic Flow Sensor for Micro Flow Rate Measurement (미소 유량 측정을 위한 마이크로 전자 유량 센서의 제작)

  • Yoon, Hyeun-Joong;Kim, Soon-Young;Yang, Sang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.334-340
    • /
    • 2000
  • This paper presents the fabrication of a micro electromagnetic flow sensor for the liquid flow rate measurement. The micro electromagnetic flow sensor has some advantages such as a simple structure, no heat generation, a rapid response and no pressure loss. The principle of the micro electromagnetic flow sensor is based on Faraday's law. If conductive fluid passes through a magnetic field, the electromotive force is generated and detected by two electrodes on the wall of the flow channel. The flow sensor consists of two permanent magnets and a silicon flow channel with two electrodes. The dimension of the flow sensor is $9\;mm\;{\times}\;9\;mm\;{\times}\;1\;mm$. The micro flow channel is mainly fabricated by anisotropic etching of two silicon wafers, and the detection electrodes are fabricated by metal evaporation process. The characteristic of the fabricated flow sensor is obtained experimentally. When the flow rates of water with the conductance of $100-200\;{\mu}S/cm$ are 9.1 ml/min and 62 ml/min, the generated electromotive forces are $261\;{\mu}V$ and 7.3 mV, respectively.

  • PDF

A Study on the Debinding Process of High Purity Alumina Ceramic Fabricated by DLP 3D Printing (DLP 3D 프린팅으로 제작된 고순도 알루미나 세라믹 탈지 공정 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500℃, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300℃ region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.

Temperature Analysis for the Point-Cell Source in the Vapor Deposition Process

  • Park, Jong-Wook;Kim, Sung-Cho;Hun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1680-1688
    • /
    • 2004
  • The information indicating device plays an important part in the information times. Recently, the classical CRT (Cathod Ray Tube) display is getting transferred to the LCD (Liquid Crystal Display) one which is a kind of the FPDs (Flat Panel Displays). The OLED (Organic Light Emitting Diodes) display of the FPDs has many advantages for the low power consumption, the luminescence in itself, the light weight, the thin thickness, the wide view angle, the fast response and so on as compared with the LCD one. The OLED has lately attracted considerable attention as the next generation device for the information indicators. And also it has already been applied for the outside panel of a mobile phone, and its demand will be gradually increased in the various fields. It is manufactured by the vapor deposition method in the vacuum state, and the uniformity of thin film on the substrate depends on the temperature distribution in the point-cell source. This paper describes the basic concepts that are obtained to design the point-cell source using the computational temperature analysis. The grids are generated using the module of AUTOHEXA in the ICEM CFD program and the temperature distributions are numerically obtained using the STAR-CD program. The temperature profiles are calculated for four cases, i.e., the charge rate for the source in the crucible, the ratio of diameter to height of the crucible, the ratio of interval to height of the heating bands, and the geometry modification for the basic crucible. As a result, the blowout phenomenon can be shown when the charge rate for the source increases. The temperature variation in the radial direction is decreased as the ratio of diameter to height is decreased and it is suggested that the thin film thickness can be uniformed. In case of using one heating band, the blowout can be shown as the higher temperature distribution in the center part of the source, and the clogging can appear in the top end of the crucible in the lower temperature. The phenomena of both the blowout and the clogging in the modified crucible with the nozzle-diffuser can be prevented because the temperature in the upper part of the crucible is higher than that of other parts and the temperature variation in the radial direction becomes small.

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Analysis of Frequency Response Curve for Conduction-Cooled Power Capacitors (전도 냉각 파워 커패시터의 주파수 응답 곡선 분석)

  • An, Gyeong Moon;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.123-130
    • /
    • 2016
  • High-frequency induction heating equipment can heat the metal by applying a High-Frequency power to the resonant circuit. The resonance circuit is composed of the work coil and the conduction-cooled power capacitor, it influences the performance of the heat treatment equipment according to the characteristics of the capacitor. However, dependence on conduction-cooled power capacitor's import is high due to lack of core technology research and development. Minimizing the generation of internal heat transmitted inside during LC resonance, reduce the reactive power loss, there is a need for a capacitor within the voltage characteristic outstanding. To implement localization it is vital that prior study of the analysis on the frequency response characteristic for the finished capacitor advanced manufacturer be implemented. Studying the interpolation method to read the value at any point of the characteristic curve for a given log-log scale was applied to the analysis tool of the capacitor by my proposed algorithm. The simulation for reproducing frequency response curves was attempted by assuming a capacitor in a simplified series equivalent RC circuit to obtain the equivalent series resistance value. It was confirmed that the reproduction rate was the result value above 83% as compared to the simulation of the properties and characteristics on the actual reactive power for Peak value, and that the algorithm can be applicable when analyzing and predicting the characteristic curves of a simpled model capacitor.

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.