• 제목/요약/키워드: Heat generation

검색결과 1,813건 처리시간 0.038초

단일 핀-관 열교환기에서 엔트로피 생성에 관한 연구 (A Study on the Entropy Generation of Single Fin-Tube Heat Exchanger)

  • 박희용;이관수;김병규
    • 태양에너지
    • /
    • 제10권1호
    • /
    • pp.14-21
    • /
    • 1990
  • 단일 핀-관열교환기와 관련된 열역학적 최적설계법을 기준하여 핀-관열교환기의 엔트로피 생성율을 조사하였다. 엔트로피 생성율(비가역성)해석법을 사용하여 최적설계조건을 구하였고 설계조건의 변화에 따른 총엔트로피 생성율과 핀의 길이, 관의 안지름과 바깥지름 및 핀간거리를 조사하였다. 이 연구의 결과에 따르면 바깥지름이 클수록 최적핀간거리와 핀높이는 커지고 엔트로피 생성율과 최적안지름은 작아진다. 또한 핀 두께를 증가시키면 계의 엔트로피 생성율과 최적핀간거리는 증가하고 핀높이를 증가시키면 엔트로피 생성율과 최적바깥지름은 증가한다.

  • PDF

Performance Prediction & Analysis of MGT Co-generation System

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.15-22
    • /
    • 2006
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new market penetration using the distributed generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection standards. KEPCO, a government company in Korea, has performed the project to identify and evaluate the performance of Micro Gas Turbine(MGT) technologies focused on 30, 60kW-class grid-connected optimization and combined Heat & Power performance. This paper describes the results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of Exhaust-gas Absorption Chiller was developed, so that it will be able to analyze or propose new distributed generation system using MGT. In addition, KEPCO carried out the field testing of the MGT Cogeneration system at the R&D Center Building, KEPCO. The field test was conducted in order to respond to a wide variety of needs for heat recovery and utilization. The suggested method and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정 (Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating)

  • 유영선;강연구;장재경;김영화;김종구;강금춘
    • 생물환경조절학회지
    • /
    • 제21권4호
    • /
    • pp.372-378
    • /
    • 2012
  • 본 연구에서는 화력발전소에서 온배수의 형태로 배출되는 폐열을 히트펌프의 열원으로 이용하여 온실의 난방에 활용할 수 있는 히트펌프 시스템을 설계 제작하였으며, 난방 성능을 분석하여 PE 파이프 열교환기의 설계기준을 제시하고자 하였다. PE 파이프 열교환기의 내경은 20mm, 두께는 2mm였으며, Roll의 직경은 1,000mm로 하였다. 연구결과 PE파이프 열교환기의 적정 길이는 1.0RT당 75m로 설계하는 것이 바람직할 것으로 판단되었으며, 이때 히트펌프시스템의 난방성능계수(COPh)는 3.8로 나타났다.

온실 냉난방을 위한 연료전지 기반 열병합 발전 시스템 (Fuel Cell-based Cogeneration System for Greenhouse Cooling and Heating)

  • 박진영;뚜안앵;박승용;이동근;배용균;김영상;이상민
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.667-672
    • /
    • 2023
  • This study proposes polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system for greenhouse heating and cooling. The main scope of this study is to examine the proposed cogeneration system's suitability for the 660 m2-class greenhouse. A 25 kW PEMFC system generates electricity for two identical air-cooled heat pumps, each with a nominal heating capacity of 70 kW and a cooling capacity of 65 kW. Heat recovered from the fuel cell supports the heat pump, supplying hot water to the greenhouse. In cooling mode, the adsorption system provides cold water to the greenhouse using recovered heat from the fuel cell. As a result, the cogeneration system satisfies both heating and cooling capability, performing 175 and 145 kW, respectively.

150 RT급 흡수식 열펌프용 고온재생기의 열전달 특성 (The heat transfer characteristics of a desorber for 150 RT absorption heat pump)

  • 박찬우;정종수
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.369-376
    • /
    • 1999
  • Experiments were carried out to study the heat transfer characteristics of a disrober for 150 RT LiBr-water absorption heat pump. An experimental apparatus was divided into four sections, a combustion chamber area, two bare-tube areas, and finally a finned-tube area to quantify the heat transfer rate of each section by measuring the generation rate of vapor. Dividing plates was installed at the upper inside part of deserter to prohibit the moving of vapor generated at heating tubes of a section to another section near. In the first bare-tube area, the generation rate of vapor was the largest among the four sections. The finned-tube area only contributed to give sensible heat increase of solution to the saturation temperature. The heat transfer area of the finned-tube area was 52.2%, which absorbed only 9.2% of the total heat from the combustion gas. On the contrary, the heat transfer area of the first bare-tube area was 16.6%, but it absorbed 52.4% of the total absorbed heat. The temperature of the solution at upper part at the finned-tube area was lower than that of the lower part, because weak solution came in upper part of the finned-tube area. But, this tendency was changed at the first and second bare-tube area due to the vigorous heat transfer and fluid flow enhanced by vapor generation through heating tubes. The overall heat transfer coefficient and heat flux were the largest at the first bare-tube area among the other sections.

  • PDF

냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구 (Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration)

  • 이창현;윤준성;김인관;권오경;차동안;배경진;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

경사진 가열면에서의 수조비등에 대한 가시화 연구 (An Experimental visualization of the Pool Boiling Heat Transfer on the Inclined square surface)

  • 김재광;송진호;김상백;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.63-68
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux(CHF) on a 70mm square surface which is inclined at $180^{\circ}$(upward), $90^{\circ}, \;45^{\circ}$. The heater block made of copper with cartridge heaters is submerged in a water tank with windows for visualization. As the heat flux increases from $100kW/m^2$ to $1.1MW/m^2$, the heat transfer regime migrates from the nucleate boiling to film boiling and results in a rapid heat up of the heater block. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized by using a digital camcorder with $512{\times}512$ pixel size at 30fps.

  • PDF

열생성을 가진 원형발열체의 외부 유속의 영향에 대한 수치해석 (Numerical Analysis on Effect of the Environmental Velocity for Circular Heating Source with Heat Generation)

  • 배강열;지명국;정한식;정희택;정효민
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.30-35
    • /
    • 2004
  • This paper represents the numerical analysis on effect of the environmental velocity for circular heating source with heat generation. In general heating system, the oil and sheath heater is widely used, but these systems have many problems. So, the heating source with carbon ingredient has been researched in many country about manufacture, thermal and electrical properties. In this research, a circular heating source was studied through numerical analysis on several conditions of unsteady state, beat generation and environmental velocity. The temperature distributions at steady state is appeared as a non-linear pattern with variations of environmental velocity. So, the correlation equation between temperature at steady state and environmental velocity was obtained.

  • PDF

Reduction of Heat Generation from Junction Box in 3 kW Photovoltaic Power Generation System

  • Yun, Jung-Hyun;Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.21-24
    • /
    • 2016
  • A junction box used in a 3 kW photovoltaic power generation system plays a role in collecting and supplying the direct current voltage produced by photovoltaic modules to an inverter. It is also used for facilitating maintenance checks and protecting the module and inverter by keeping the voltage constant. As for the junction box, using it in a parallel connection creates a difference between the setup modules. In order to compensate, an inverse voltage diode is used. But the high-power created through the solar generator can be delivered to the inverter through the inverter regularly. Therefore, a component can break down due to excess heat. And consequently short circuits and electric leakage occurs. In this study, using a junction box that enabled the bypass of high electric power, it was possible to reduce heat generation by approximately 35℃ when compared to a standard junction box.

칼리나 사이클을 이용한 지열발전 시스템의 시뮬레이션 (Simulation of a geothermal power generation system using the Kalina cycle)

  • 장기창;백영진;김민성;이영수;박성룡;나호상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.626-629
    • /
    • 2008
  • In this study, a geothermal power generation system using the Kalina cycle was investigated by the simulation method. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The effect of the ammonia fraction at the separator inlet on the cycle performance is investigated in detail.

  • PDF