• 제목/요약/키워드: Heat fluid analysis

검색결과 1,018건 처리시간 0.039초

LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석 (CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering)

  • 장성철;엄정필;정현철
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.

설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009)

  • 한화택;이대영;김서영;최종민;백용규;권영철
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

파라핀 슬러리의 생성 및 관내 대류열전달에 관한 연구 (Formation of a paraffin slurry and its convective heat transfer in a circular pipe)

  • 최은수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.50-60
    • /
    • 1998
  • As a method to develop an enhanced heat transfer fluid, the fine particles of a phase-change material were mixed with a conventional heat transfer fluid. Paraffin, which can be obtained easily in domestic market, was used for the phase-change material and water was used as a carrier fluid. Fine liquid particles of paraffin were formed in water as an emulsion by using an emulsifier, and they were cooled rapidly to become solid particle, resulting in paraffin slurry. The average diameter of produced solid particles was inversely proportional to the amount of the added emulsifier, which was theoretically proved. The produced paraffin slurry was tested thermally in heat transfer test section having a constant-heat-flux boundary condition. The test section was made of a circular stainless-steel pipe, which was directly heated by the power supply having a maximum of 50 Volts-500 Amperes. DSC(Differential scanning calorimeter) tests showed that two kinds of phase change were involved in the melting of paraffin, and it was explained in two different ways. A five- region-melting model was developed by extending the conventional three-region-melting model, and was used to obtain the local bulk mean temperatures of paraffin slurry in the heating test section. The local heat transfer coefficient showed a maximum where the bulk mean temperature of the paraffin slurry reached at the melting temperature of paraffin.

인버터 기동반의 열전달 예측을 위한 수치해석 (A Numerical Analysis for the Heat Transfer Prediction of inverter system)

  • 김명수;김만석;최형권
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.57-62
    • /
    • 2014
  • In the study, a numerical analysis is conducted to investigate the heat transfer characteristics of an inverter system inside a panel for three locations (bottom, middle and top). A conjugate heat transfer is simulated using a CFD (computational fluid dynamics) code since the heat transfer through the surrounding panel walls is important. It is shown that the heat flux through the left wall, which is important for the safety of the electronic equipment, is the biggest when the inverter is located at bottom. On the other hand, the heat flux through the left wall is negligible when the inverter at middle or top. It is also found that the heat flux to the surrounding walls is the lowest when the inverter is at middle.

전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석 (Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device)

  • 쑨휘;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.

나선형코일 튜브 비등2상 유동 수치해석 (Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube)

  • 조종철;김웅식;김효정;이용갑
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구 (Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat)

  • 조수용;조종현
    • 신재생에너지
    • /
    • 제10권4호
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

수중 고온 단일 기포의 열전달 해석 연구 (A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water)

  • 윤석태
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.117-123
    • /
    • 2024
  • 수중에서 발생한 기포는 주변 유체의 밀도와 압력 차이에 의해 상승하는 부력을 받는다. 또한 주변 유체와의 점성, 표면장력, 상승 속도 그리고 크기 차이에 따라 기포의 거동, 형상, 열교환 과정 등이 달라진다. 본 연구에서는 원기둥 수조 내 상승하는 고온 단일 기포의 속도 그리고 열전달 해석에 관한 연구를 수행하였다. 이를 위해 이론적 식을 통해 기포의 속도 그리고 온도 등을 계산하여 수치 해석 결과와 비교하기 위한 자료를 설정하였다. 그리고 상용 프로그램으로 수치 해석을 수행하였으며, 격자의 변화에 따른 수치 해석 결과의 안정성을 격자 수렴성 지수 계산을 통해 확인하였다. 수치 해석 결과 단일 기포의 상승 속도와 온도는 최소 격자의 크기가 기포 지름의 1/160이 될 때 수렴성을 보였으며, 온도 감소는 0.05초 이내에 주변 유체와 동일한 수준으로 감소하는 것을 확인하였다.

변압기 절연유의 물성치 변화에 따른 온도특성해석 (Temperature Characteristic Analysis according to Variation of Properties of Transformer Insulating Oil)

  • 김지호;이욱
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.327-332
    • /
    • 2014
  • In this paper, the temperature distribution according to the property change of the insulating oil of the power transformer and max temperature were predicted through the ductility interpretation which heat-flow is coupled. By using CFD (Computation Fluid Dynamics) for the interpretation, the temperature distribution of 154kV the class single phase power transformer was predicted. The power loss causing the temperature rise of the transformer was changed to the heat source and we used as the input value for the heat-flow analysis. The temperature distribution was predicted according to the change of the density, specific heat, thermal conductivity and viscosity, that is the ingredient having an effect on the temperature rise of the transformer oil. The mineral oil of 4 kinds used in domestic and international based on the interpreted result was selected and the temperature distribution according to each load and Hot Spot temperature was predicted.