• Title/Summary/Keyword: Heat exposure

Search Result 539, Processing Time 0.025 seconds

Effect of Thermal Aging on The Strength of Laminate Composites Structure (라미네이트 강도 특성에 미치는 Thermal Aging의 영향)

  • 정연운;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.24-28
    • /
    • 2002
  • Composite reinforced fiber materials are used in lots of fields such as a part of aeronautic space, ship, machinery and so on because can make structure wished for necessary condition by control fiber direction and laminated sequence. As the use of advanced composites increase, specific techniques have been developed to repair changed composite structures. In order to repair the damaged part production high quality composite reinforced fiber are completed by control the surrounding temperature and press in autoclave. The quality is influenced heat exposure degree by chemical reaction for precessing. This study considerated influence limit of using by repair structure part and change of properties according to heat exposure degree for repairing.

  • PDF

Micromachining technology using photosensitive glass (감광성유리를 이용한 마이크로머시닝 기술)

  • Cho, Soo-Je
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Micromachining of photosensitive glass by UV exposure, heat treatment, and etching processes is reported. Like photoresist, the photosensitive glass is also classified into positive and negative types by development characteristics. For the positive type, the exposed area is crystallized and etched away during the etching process in HF solution, whereas the unexposed area is crystallized and etched away for the negative type. The crystallized area of the photosensitive glass has an etch rate approximately 30~100 times faster than that of the amorphous area so that it becomes possible to fabricate microstructures in the glass. Based on the unique properties of glass such as high optical transparency, electrical insulation, and chemical/thermal stability, the glass micromachining technique introduced in this work could be widely applied to various devices in the fields of electronics, bio engineering, nanoelectonics and so on.

  • PDF

Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains

  • Awad, Elmutaz Atta;Najaa, Muhamad;Zulaikha, Zainool Abidin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.778-787
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of normal and heat stress environments on growth performance and, selected physiological and immunological parameters, caecal microflora and meat quality in Cobb 500 and Ross 308 broilers. Methods: One-hundred-and-twenty male broiler chicks from each strain (one-day-old) were randomly assigned in groups of 10 to 24 battery cages. Ambient temperature on day (d) 1 was set at 32℃ and gradually reduced to 23℃ on d 21. From d 22 to 35, equal numbers of birds from each strain were exposed to a temperature of either 23℃ throughout (normal) or 34℃ for 6 h (heat stress). Results: From d 1 to 21, strain had no effect (p>0.05) on feed intake (FI), body weight gain (BWG), or the feed conversion ratio (FCR). Except for creatine kinase, no strain×temperature interactions were observed for all the parameters measured. Regardless of strain, heat exposure significantly (p<0.05) reduced FI and BWG (d 22 to 35 and 1 to 35), immunoglobulin Y (IgY) and IgM, while increased FCR (d 22 to 35 and 1 to 35) and serum levels of glucose and acute phase proteins (APPs). Regardless of temperature, the Ross 308 birds had significantly (p<0.05) lower IgA and higher finisher and overall BWG compared to Cobb 500. Conclusion: The present study suggests that the detrimental effects of heat stress are consistent across commercial broiler strains because there were no significant strain×temperature interactions for growth performance, serum APPs and immunoglobulin responses, meat quality, and ceacal microflora population.

The Correlation between NaCl Adaptation and Heat Sensitivity of Listeria monocytogenes, a Foodborne Pathogen through Fresh and Processed Meat

  • Lee, Jeeyeon;Ha, Jimyeong;Kim, Sejeong;Lee, Soomin;Lee, Heeyoung;Yoon, Yohan;Choi, Kyoung-Hee
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.469-475
    • /
    • 2016
  • This study examined the relationship between NaCl sensitivity and stress response of Listeria monocytogenes. Nine strains of L. monocytogenes (NCCP10805, NCCP10806, NCCP10807, NCCP10808, NCCP10809, NCCP10810, NCCP10811, NCCP10920 and NCCP 10943) were exposed to 0%, 1%, 2% and 4% NaCl, and then incubated at 60℃ for 60 min to select strains that were heat-sensitized (HS) and non-sensitized (NS) by NaCl exposure. After heat challenge, L. monocytogenes strains were categorized as HS (NCCP 10805, NCCP10806, NCCP10807, NCCP10810, NCCP10811 and NCCP10920) or NS (NCCP10808, NCCP10809 and NCCP10943). Total mRNA was extracted from a HS strain (NCCP10811) and two NS strains (NCCP10808 and NCCP10809), and then cDNA was prepared to analyze the expression of genes (inlA, inlB, opuC, betL, gbuB, osmC and ctc) that may be altered in response to NaCl stress, by qRT-PCR. The expression levels of two invasion-related genes (inlA and inlB) and two stress response genes (opuC and ctc) were increased (p<0.05) in NS strains after NaCl exposure in an NaCl concentration-dependent manner. However, only betL expression was increased (p<0.05) in the HS strains. These results indicate that the effect of NaCl on heat sensitization of L. monocytogenes is strain dependent and that opuC and ctc may prevent NS L. monocytogenes strains from being heat sensitized by NaCl. Moreover, NaCl also increases the expression of invasion-related genes (inlA and inlB).

SU-8 Mold Fabrication with Low Internal Stress and High Aspect Ratio for UV LIGA Process (고 형상비 UV LIGA 공정을 위한 낮은 내부응력의 SU-8 도금틀 제작)

  • Jang, Hyeon-Gi;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.598-604
    • /
    • 1999
  • This paper describes the research to minimize the film stress and maximize the aspect ratio of photoresist structure, especially about SU-8 for electroplating mold. UV LIGA process using SU-8 allows fabricating high aspect ratio polymer structures. However, it is hard to get fine patterns in the high aspect ratio structures because of high internal stress and difficulty of removing SU-8. The purpose of this paper is to setup the process condition for the obtainment of both low film stress and high aspect ratio and to find design rules that make the pattern be less dependent on stress problem. Firstly, the process of heat treatment and exposure of SU-8 are proposed. These two conditions control the amount of cross-linkage in polymer structure, which is the most important parameter of both pattern generation and remaining stress. Heat treatment is dealed with soft bake and post-exposure-bake. Temperature and time duration of each step are varied with heat treatment condition. Some test patterns are fabricated to evaluate the proposed process. Nickel electroplating is performed with the mold fabricated through the proposed process to confirm the SU-8 as a good electroplating mold.

  • PDF

Thermal Steady State in an Anatomical Model of the Human Head under High-Power EM Exposure (고출력 전자기파 노출 환경에서 인체 두부의 온도 변화)

  • Kim, Woo-Tae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1073-1084
    • /
    • 2010
  • In this paper, the bio-heat equation including thermoregulatory functions is solved for an anatomically based human head model comprised of 14 tissues to study the thermal implications of high-power exposure to electromagnetic(EM) fields due to half-wave dipole antenna both at 835 and 1,800 MHz. The dipole antenna is located at the side of the ear and the front of the eyes. The FDTD method has been used for the SAR computation. When solving the BHE, the thermoregulation function and sweating effetecs are included in order to predict more exact temperature increase. It is noted that an approximately proportional relationship between the tissues and the maximum temperature increase and the antenna power is not maintained when the thermoregulation and sweating effects are fully accounted for under high power exposure.

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.229-235
    • /
    • 1997
  • A low power (300 mW) catalytic bead combustible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 MJ/$m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas has a slightly different curve of sensitivity vs. sensor temperature. Thus there Is no temperature at which all sensitivities are equal. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Study on the Steady-State Heat Conduction Characteristics of a Small Gasoline Engine (소형 가솔린 기관의 정상 열전도 특성에 관한 연구)

  • 김병탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.267-277
    • /
    • 1997
  • In this paper, heat conduction characteristics of the cylinder block of a small 3 - cylinder, 4¬stroke gasoline engine were analyzed using the 3 - dimensional finite element method. Based on the experimental data, the engine cycle simulation was carried out in order to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of the coolant. Heat transfer data of the gas, which were averaged with respect to exposure time to the wall, were taken as convective boundary conditions corresponding to the operating conditions to obtain the temperature fields of the block. Finally silicon nitride(Si3N4) was taken as the material of the block liner in order to investigate its temperature distribution characteristics and compare the results with the original ones.

  • PDF

Study on the Microstructure and Mechanical Properties of 17-4PH Stainless Steel Depending on Heat Treatment and Exposure Time (열처리 및 노출시간에 따른 17-4PH 스테인레스강의 미세조직 및 기계적 특성에 관한 연구)

  • Yu, Wi-Do;Lee, Jong-Hun;Im, Yeong-Mok;Yun, Guk-Tae
    • 연구논문집
    • /
    • s.32
    • /
    • pp.77-84
    • /
    • 2002
  • A martensitic precipitation hardening stainless steel, 17-4PH has been widely used in the aircraft, chemical and nuclear industries for long time, owing to the excellent mechanical properties with corrosion resistance that can be achieved by simple heat treatment. The microstructure and mechanical properties of the 17-4PH stainless steel cast parts for aircraft, such as impeller, are largely affected by heat treatment condition. But the database of heat treatment has not been clearly established in the domestic investment casting industries because the domestic aerospace, industry lags behind the advanced countries. In this study, the microstructural evolution and mechanical properties of cast 17-4PH stainless steel depending on the heat treatment conditions and aging at $400^{\circ}C$ were investigated.

  • PDF