• Title/Summary/Keyword: Heat exposure

Search Result 540, Processing Time 0.024 seconds

Comparative Stability of vit E isomers Extracted from Unsaponifiable Fractions of Rice Bran Oil under Various Temperature and Oxygen Conditions

  • Lee, Young-Sang;Park, Soon-Ryang
    • Korean Journal of Plant Resources
    • /
    • v.21 no.6
    • /
    • pp.435-439
    • /
    • 2008
  • Due to the fact that tocopherols and tocotrienols have antioxidant and anticancer properties, the commercial utilization of unsaponifiable fractions in rice bran is increasing. These nutraceutical compounds, however, are fairly unstable and readily break down when exposed to oxygen or lighting conditions. To compare the relative sensitivity of vit E isomers to heat and oxygen, concentrated unsaponifiable fractions extracted from crude rice bran oil were exposed to various temperature, oxygen (nitrogen-balanced), and bathing solvent conditions and resultant concentration changes in ${\alpha}$- and ${\gamma}$-tocopherols (T) and tocotrienols (T3) were evaluated. Each isomer exhibited different heat stability. Among them, ${\alpha}$-T3 degraded more rapidly compared to other vit E isomers while ${\alpha}$-T was the most stable isomer. Oxygen level also showed significant impact on each isomer's stability where severe reductions of ${\gamma}$-T (by 20%) and ${\gamma}$-T3 (by 29%) were observed under 2% oxygen conditions, while under 0% oxygen conditions no degradation could be observed even after exposure to $95^{\circ}C$ for 4 hours. When various blending solvents were mixed with concentrated unsaponifiable fractions, organic solvents such as isooctane and hexane were more effective in maintaining the stability of ${\gamma}$- T3 compared to edible oils, among which com oil was more efficient than soybean and rice bran oils.

Analysis of regional type according to spatial correspondence between heat wave vulnerable areas and health damage occurrence (폭염 취약지역과 건강 피해 발생의 공간적 일치성에 따른 지역 유형 분석)

  • Hee-Soo HWANG;Ji Yoon CHOI;Jung Eun KANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.89-113
    • /
    • 2023
  • This study aimed to identify heat wave vulnerable areas and discuss spatial typology and policy directions through spatial coincidence analysis of heat wave damage. By utilizing the climate change vulnerability assessment of the Intergovernmental Panel on Climate Change (IPCC) and Spatial Statistics Comparison Analysis, this study examined cities, counties, and districts in South Korea for five years (2015-2019), including 2018, when the heat wave was most extreme. It was determined that the number of heat wave days (exposure) was the most impactful among various factors for heat wave vulnerability. Sensitivity and adaptive capacity to heat waves were found to vary according to regional characteristics. The relationship between heat wave vulnerability and damage was categorized into four types through spatial coherence. Hot to Hot and Cold to Cold types have a positive relationship between vulnerability and damage, while Hot to Cold and Cold to Hot types have a negative relationship. The findings suggest that since different types of regions have distinct characteristics and conditions, policies and research for improvement should be directed to address each region separately. This study may be used as basic data for establishing heat-related policies in the future, as it categorizes regions by considering both heat vulnerability and damage and examines the direction of response by type.

Effect of Oral Administration of DiakurTM (a Glucose and Electrolytes Additive) on Growth and Some Physiological Responses in Broilers Reared in a High Temperature Environment

  • Takahashi, Kazuaki;Akiba, Yukio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1341-1347
    • /
    • 2002
  • An experiment was conducted to determine effects of oral administration of $Diakur^{TM}$ (an additive of glucose and electrolytes for young calves) on growth performance and some physiological responses in male broilers reared in a high temperature. A 2 by 3 factorial arrangement test of 2 temperatures (24 and $36^{\circ}C$) and 3 levels of oral administration of the glucose and electrolytes additive, $Diakur^{TM}$, (0, 150 and 300 mg/day/100 gBW) were applied in the experiment. Male broiler chicks (2 weeks of age) were assigned to six groups and received dietary and temperature treatments for 7 days. The additive of glucose and electrolytes was suspended with water and intubated into crop twice a day (08:00 and 17:00). Oral administration of the additive prevented decreases in food intake and growth rates in broilers due to exposure of the hot environment. Oral administration of the additive also improved a lowered electrolyte ($Na^+$ + $K^+$ - $Cl^-$) balance in plasma, low mitogenic response of blood mononuclear cell and an increase in glucose concentration due to exposure to the high environmental temperature. Oral administration of the additive increased rectal temperature regardless of environmental temperatures. On the other hand, blood pH, $pCO_2$ and $HCO_3$ - concentration, and plasma creatine kinase activity were not affected by the oral administration. The results suggested that oral administration of the glucose and electrolytes additive, $Diakur^{TM}$ during heat stress did not only prevent decrease in growth performance, but also normalized some physiological and immunological responses in male broilers.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

Comparison of Dyeing Ability of Acid Hair Dye Using Chestnut Shell Dye (율피 색소를 함유한 산성 염모제의 모발 염색력 비교)

  • Lim, Dae Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1273-1281
    • /
    • 2021
  • The purpose of this study was to increase the power of color and examine the long-lasting power, which is a disadvantage of one-pack acid hair dye by using chestnut shell pigment. For this, hair dyeing power was measured using a spectrophotometer, the optical density(O.D.) value was measured to examine the degree of fading of the hair, and the elasticity of the hair was analyzed by measuring the tensile strength. As a result of comparing the results of applying different leaving times and treatment methods to the hair samples of each level, the experimental group that was heat-treated for 20 minutes showed the highest dyeing power. Then, it was confirmed in the order of 40 minutes of natural exposure, 10 minutes of heat treatment, and 20 minutes of natural exposure. And it was also confirmed that the color expression visually improved as it went up to level 10. However, at level 10, it was confirmed that some water loss occurred even after 3 days and the tensile strength was low. These findings that indicated the beauty industry will popularize a one-step acid hair dye containing various natural dye ingredients to help maintain modern people's well-being and healthy mind and body.

Effect of Cr/Ti/Al Elements on High Temperature Oxidation Behavior of a Ni-Based Superalloy with Thermal Exposure (고온 노출 니켈기 초내열합금 터빈 블레이드의 Cr/Ti/Al 성분이 고온 산화에 미치는 영향)

  • Byung Hak Choe;Sung Hee Han;Dae Hyun Kim;Jong Kee Ahn;Jae Hyun Lee;Kwang Soo Choi
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ' precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several ㎛ depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or µ phase of TCP precipitation with the high-Cr component resulting in material brittleness.

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Deterioration Characteristics of Naturally Aged AA 2026 due to ExpoSure to High Temperatures (자연 시효 처리된 AA 2026의 고온 노출에 따른 물성 열화 특성에 대한 연구)

  • HaNeul Kim;HyeonWoo Kang;ByoungLok Jang;HeeKook Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.114-120
    • /
    • 2024
  • AA 2026, which is used as an aviation material, is an improved version of 2024 and has higher physical properties, and is a material that has the potential to be applied to supersonic aircraft to be developed in the future. However, when an aircraft exceeds supersonic speeds, the surface heats up and the material must be resistant to this. Therefore, this study confirmed the high-temperature properties of AA 2026, an aviation structural material. AA 2026, solution treated at 500℃ for 4hr, was naturally aged at room temperature for more than 168 hr. Changes in microstructure and physical properties were confirmed over several hours of exposure to 100℃, 200℃, and 300℃, respectively. As a result of microstructure analysis, there was no significant change at 100℃, and from 200℃, GPB, a strengthening mechanism, grew and formed an S Phase. It was confirmed that the S Phase grew as the exposure time increased. Through a tensile test, it was confirmed that physical properties deteriorated as the precipitates grew. However, it was confirmed that the properties were stably maintained at 100℃, which is the temperature when the speed of a supersonic aircraft is less than Mach 2.

Relationship between Total Body Fat and S/V Ratio and Body Cooling for Two Hours at $15^{\circ}C$ (한냉에 노출된 인체의 냉각과 총지방량 및 S/V 비율 사이의 관계)

  • Chung, Kwan-Ogg;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 1969
  • Skin temperatures on 10 sites and rectal temperature at every 10 minutes, oxygen consumption at every 20 minutes were measured on 18 male subjects (ages between 14 and 47 years) after exposure to cold air at $15^{\circ}C$ for two hours in a climatic room. Total body fat measured by means of a skinfold method and ratio of body surface area (S) to body volume (V), S/V, were utilized as basis of observations. Surface area was calculated after DuBois equation and body volume was calculated by our original formula. In influencing on the heat loss from the body core to the cold environment, % fat showed inverse relations, whereas, S/V ratio showed direct relations. Thus these two factors acted antagonistically on the body heat loss. Local skin temperatures showed negative correlations with skinfold thickness on the same site, nemaly, on chest, r=-.567; on back, r=-.507; and on upper arm, r=-.353. The other 7 skin sites showed low correlations with % fat. Minimum mean weighted skin temperature (MWST) showed a negative correlation (r=-.443) with % fat, and showed no correlation with S/V ratio. Oxygen consumption in the cold air at $15^{\circ}C$ increased from the first measurement at 20 minutes after exposure and maintained the same increasing trend up to 120 minutes. ${\Delta}T_R$ was greater in tile lean subjects who showed a greater % change in oxygen consumption. The antagonistic actions of % fat and S/V ratio on the heat loss were manifested by observations as follows: minimum rectal temperature was higher In fat subjects (r=.600) and lower in subjects with a greater S/V ratio (=-.582), ${\Delta}T_R$ was smaller in fat subjects (r=-.738) and greater in subjects with a greater S/V ratio (r=.618). Temperature difference between body core and skin surface (minimum rectal temperature minus minimum MWST) showed a positive correlation with % fat (r=.600) and a negative correlation with S/V ratio (r=-.881). Decrease in the mean body temperature and heat debt, respectively, showed negative correlations with % fat and positive correlations with S/V ratio.

  • PDF