• Title/Summary/Keyword: Heat exchanger in water

Search Result 630, Processing Time 0.211 seconds

Kinetic study about the effect of electric field and contact time of high voltage impulse on reduction of Ca2+ concentration (고전압 임펄스 공정의 전계와 접촉시간이 Ca2+ 농도 저감에 미치는 영향의 속도론 연구)

  • Kim, Dam-Ha;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • High voltage impulse (HVI) has been gained attention as an alternative technique that could control the CaCO3 scale problems encountered in water main, pipe, cooling tower and heat exchanger vessels. The aim of this study was to investigate the effect of electric field (E) and contact time (t) of HVI on reduction of Ca2+ concentration at two different temperatures of 25℃ and 60℃. A kinetic model on the effect of E and t was investigated too. As the E and t increased, the Ca2+ concentration decreased more than that of the control (= no HVI). The Ca2+ concentration decreased up to 81% at 15 kV/cm at 60℃, which was nearly 2 times greater than the control. With these experimental data-set of reduction of Ca2+ concentration under different E and t, the kinetic model was developed. The relationship between E and t required to reduce the concentration of Ca2+ by 30% was modeled at each temperature. The empirical model equations were; E0.83· t = 60.3 at 25℃ and E0.08· t = 1.1 at 60℃. These equations state the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increment of E and vice versa.

The Experimental Study of the Hybrid Cooling Tower using Cross and Counter Type Fills (직교.대향류 충진재를 이용한 하이브리드 냉각탑에 대한 실험적 연구)

  • Jun, C.H.;Lee, H.S.;Lee, H.C.;Moon, C.G.;Kim, J.D.;Kim, Eun-Pil;Yoon, J.I.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.236-237
    • /
    • 2005
  • An experimental study on the Hybrid Cooling Tower has been done having a rated capacity of 3RT. Counter flow type fill, cross flow type fill and hybrid-type fill which is combined with two type fills as previously stated having a height of 0.3m have been used in the 0.8m${\times}$0.4m${\times}$1.9m dimensional tower respectively. The heat exchanger is consisting of 2 or 3 rows. The relevant temperatures and the velocities were selected based on the typical Korean weather for the year round operation of the tower. The cooling capacity of the tower is explained with respect to varying air inlet velocities, wet-bulb temperatures, and air to cooling water volume flow rate ratio (L/G ratio). The capacity of the hybrid-type fill was much superior to other fills, but hybrid-type fill shows higher pressure drop.

  • PDF

Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor (냉매분배기 분배성능에 미치는 내부 형상인자의 영향)

  • Kim, Dong-Hwi;Sa, Yong-Gheol;Chung, Baikyoung;Park, Byung-Duck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.

Thermoacoustic Refrigerating System, Part II : Implementation and Experiment (열음향 냉장시스템 (II) : 제작 및 실험)

  • Hah, Zae-Gyoo;Ahn, Chul-Yong;Sung, Keong-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.13-20
    • /
    • 1995
  • In this paper, the thermoacoustic refrigerating system was implemented and its operation was experimentally verified. The system is composed of several parts ,4 inch midrange speaker, speaker housing, chamber, stack housing, stack of plates, heat exchangers, thin pipe and cavity. The system is filled with He gas at 10 bar and contains T-type thermocouples and condenser microphone for measuring the temperature and pressure inside, respectively. In addition, cooling water is used for protecting speaker from thermal destruction and cooling down the hot heat exchanger. For the experimental verification of the implemented refigerating system, electrical impedance and resonance characteristics were measured. The results showed that it was most efficient to drive the system at 340 Hz. When operated at 340 Hz, $30^\circ{C}$ environments and 50 electical watts, the temperature of the cold region decreased by $16^\circ{C}$. The dissatisfaction mainly comes from the incomplete thermal insulation of the cold region. We also pointed out some guidelines to improve the performance for later study.

  • PDF

Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System (36 MTD급 천연가스 BOG 재액화 플랜트 기본설계)

  • Ko, Junseok;Park, Seong-Je;Kim, Ki-Duck;Hong, Yong-Ju;Koh, Deuk-Yong;Kim, Hyobong;Yeom, Hankil
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this paper, we carried out the basic design of 36 MTD natural gas BOG re-liquefaction system to recover the generated natural gas during performance test of LNG pump and natural gas compressor. The re-liquefaction process of natural gas is designed to have 1500 kg/h of liquefaction rate with reverse Brayton refrigeration cycle. With the designed process, the variation of liquefaction rate is calculated for various inlet conditions of feed gas. From results, the liquefaction rate is more sensitive for inlet temperature than gas composition. The specifications of equipments such as gas blower, natural gas compressor, cryogenic heat exchanger and nitrogen compander are determined on the basis of the designed process. The requirement of power consumption and cooling water are also determined through the basic design.

An Analytical Study on the Performance Analysis of a Desalination System by Condensing Method (응축방식을 이용한 담수화 시스템의 성능예측을 위한 분석연구)

  • Kim, Chul-Ho;Kim, Won-Il;Choi, Jea-Young;Kim, Jae-Choul;Kim, Min-Sun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • A new concept of an Eco-friendly desalination method is introduced in this study. The main idea of the desalination method of seawater is the condensation of the vaporized seawater by solar heat energy on the surface of seashore. The wind turbine blade plays a role of heat exchanger condensing the vaporized water in the air. In this analytical study, the availability of the proposed desalination system was studied. First, an analytical condensation theory of the vaporized water in air was arranged and the parametric study was conducted to estimate the amount of freshwater produced from the system with the change of the temperature difference between the humid air and turbine blade, and the relative humidity in air, and wind speed. From the analytical calculation, 2,927(ton/year) of freshwater was produced at the vertical-type wind turbine (Diameter=4m, Height=3m) as the relative humidity is 100%, the temperature difference between the impeller blade and the humid air is $40^{\circ}C$ and the wind speed is 10m/s.

The Effects of Scale Growth Inhibition on Water Pipe using Frequency Driver (Frequency Driver를 이용한 냉온수관의 스케일 방지억제효과)

  • Jang, Mi-Jeong;Sung, Il-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.258-266
    • /
    • 2011
  • Scale induced by hardness materials in water must be controled because of it can be result in remarkable damages of pipeline as well as water quality deterioration. Especially hot water system is one of scale management required facility as scale formation can be accelerated by temperature. The scale control performance of frequency driver (FD) was tested instead of existing methods such as chemical, physical and electromagnetic methods which needs chemicals and electric power. Three kinds of pipe coupons were submerged in test water with 500 mg/L of hardness for 33 days and XRD and SEM were analysed for comparing scale formation characteristics of these coupons. Calcite ($CaCO_3$) which came from hardness of water was formed on only cast iron pipe coupon and this coupon showed higher corrosion rate than copper and stainless steel pipe coupon. Hot water circulating system connected cast iron pipe with and without FD was operated with 300 mg/L of hardness water at $50^{\circ}C$ for monitoring of scale formation and water quality with and without FD. XRD showed that FD leaded to magnetite ($Fe_3O_4$) scale which is good scale for preventing corrosion than calcite and SEM image also indicated the scale control effect of FD. Scales of 16% on pipe joint, 14% on pipe length, and 42% on heat exchanger decreased with FD comparing scales of those parts without FD. From the results of water quality, FD reduced crystallization of hardness material without chemical reaction in water and it can indicate that FD is safe and proenvironmental technology for scale reduction.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.