• Title/Summary/Keyword: Heat exchanger fin

Search Result 366, Processing Time 0.023 seconds

A study on the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger (핀-관 열교환기의 표면특성에 따른 착상 거동에 관한 연구)

  • 류수길;이관수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.377-383
    • /
    • 1999
  • In this study, the behavior of frost formation according to surface characteristics in the fin-tube heat exchanger has been examined experimentally. The results show that the thickness of the frost which is attached to the hydrophilic heat exchanger becomes thin and the air pressure drop is smaller than that of bare aluminium heat exchanger However, the frost mass of hydrophilic heat exchanger is more than the bare one. Hence, high density frost is attached to hydrophilic heat exchanger. The sensible and latent heat flux of hydrophilic heat exchanger is bigger than that of bare one, but the increasing amount is very small and the improvement of thermal performance is also very small. The variation of fin-pitch of heat exchanger shows little influence on frost formation and hydrophilic heat exchanger loses its surface characteristics rapidly with increasing relative humidity.

  • PDF

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF

Experimental Study of Performance Characteristics of Various Fin Types for Fin-Tube Heat Exchanger

  • Youn, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.29-38
    • /
    • 2000
  • Air side heat transfer and pressure drop for f 9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65 mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7 mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power

  • PDF

A study on airside performance of finned-tube heat exchanger according to fin combination and fin pitch variation of using large scale model (확대모형을 이용한 휜-관 열교환기의 휜 형상 및 휘 간격 변화에 따른 공기측 성능에 관한 연구)

  • Byun, Ju-Suk;Jeon, Chang-Duk;Lee, Jin-Ho;Kim, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.281-287
    • /
    • 2005
  • This study investigates the pressure drop and heat transfer characteristics of heat exchanger according to the combination of fin configuration and fin pitch of each row by the similitude experiments with the finned-tube geometry scaled as large as four times Finned-tube heat exchanger has 2 rows, and fin geometry consists of two cases, louver-louver and louver-slit. Fin pitch is varied with three types in each case, 6-6 mm, 8-8 mm and 8-6 mm. Results show that total heat transfer can be occurred evenly at each row by varying the fin pitch of 1st row and 2nd row. Heat transfer rate and pressure drop characteristics change according to the combination for fin geometry and fin pitch.

  • PDF

Analysis of heat exchanger in the drying system using solar collector with evacuated tubes (진공관형 태양열 집열기를 이용한 건조장치의 열교환기 해석)

  • Kang, Hyung-Suk;Han, Young-Min;Lee, Gwi-Hyun;Lee, Sung-Joo;Yoon, Sae-Chang
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.46-55
    • /
    • 2006
  • The performance enhancement of heat exchanger in the drying system using solar collector with evacuated tubes is analyzed. First, for this analysis, the heat loss from a reversed trapezoidal fin attached at the pipe is calculated as a function of convection characteristic number ratio, fin base length and fin tip length. Also, the optimum heat loss and fin tip length of the fin under certain conditions are presented. The overall surface effectiveness of the cylinder with reversed trapezoidal fins in the heat exchanger are shown as a function of half fin base height, fin lateral slope and fin tip length.

  • PDF

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

THE COMBUSTION CHARACTERISTICS OF THE CATALYTIC HEAT EXCHANGER WITH FIN TUBES (핀 튜브를 이용한 촉매 열 교환기의 연소특성)

  • Yu, Sang-Phil;Seo, Yong-Seog;Cho, Sung-June;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.169-177
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by the experiment and numerical simulation. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces. Numerical simulation results demonstrated that the flow pattern of the mixture significantly affected the conversion of the mixture.

  • PDF

Forced Convection Heat Transfer for Two Circular Tube Arrays with Annular Fins (환형휜이 부착된 두 개의 원형관 배열에 대한 강제대류 열전달)

  • Kim, Seung-iI;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1093-1101
    • /
    • 2020
  • This study was carried out numerically to investigate the air flow and thermal performance around single and parallel fin-tube heat exchangers and the cooling performance of the fluid inside the heat exchangers. In this study, the air velocity(1~7m/s), the pitch of fin(4, 6.1, 8, 11.3, 18.3, 44mm) and the diameter of fin(31, 33, 35, 37, 39mm) were varied. The flow rate of the water at the fin-tube heat exchanger inlet is 89cc/min and the water temperature is 353K. The air temperature at the upstream region of the heat exchanger is 300K. flow rate of the water at the fin-tube heat exchanger inlet is 80cc/min and the water temperature is 353K. It was found that the air pressure drop around single and parallel fin-tube heat exchangers was highly dependent on the air velocity and the fin pitch, but was independent of the fin diameter. Also, it was shown that pressure drop increased more the parallel arrangements than in single heat exchanger. The temperature difference of water at the inlet and outlet of the heat exchanger depended on the air velocity, the fin pitch and the fin diameter, and it was found that the parallel arrangement method further reduced the temperature of water. It was shown that the Nusselt number increased as the Reynolds number and the fin pitch increased, and decreased as the fin diameter increased.

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle (이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.