• Title/Summary/Keyword: Heat exchanger, Pressure drop

Search Result 398, Processing Time 0.028 seconds

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery (핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석)

  • Maeng, Jae-Hun;Koo, Byeong-Soo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.

Study on Evaporating Heat Transfer of HCs Refrigerants by Changing of Tube Diameter (관경별 탄화수소계 냉매의 증발 열전달에 관한 특성평가)

  • Lee, Kwang-Bae;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.41-42
    • /
    • 2005
  • The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm, 9.52 mm, 6.35 mm with 1.78 mm,1.52 mm,1.4 mm wall thickness each is used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22. and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22. The highest evaporating heat transfer coefficient of all refrigerants was shown in a tube diameter of 6.35 mm with same mass flux.

  • PDF

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

Performance of A Fresh Water Generator Applied Plate Heat Exchangers and Flow in the Channel (판형열교환기를 적용한 청수제조장치의 성능 및 채널내 유동)

  • Jin, Z.H.;Ji, M.K.;Lee, K.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.5-10
    • /
    • 2009
  • 본 연구에서는 판형열교환기를 적용한 청수제조장치의 성능에 대하여 연구를 수행하였다. 판형열교환기는 자체의 높은 열전달 성능과 컴펙트한 장점으로 하여 산업에서 점차 널리 사용되고 있다. 또한 사용, 유지보수가 다른 종류의 열교환기에 비하여 편리하여 유연성 있게 사용할 수 있다. 본 실험에서는 세브론 각도가 60도인 전열판을 사용하였으며 이젝터의 작동으로 열교환기를 장착하고 있는 탱크내부에 진공압력을 유지함으로서 내부유체가 $51^{\circ}C{\sim}57^{\circ}C$에서 증발현상이 발생하는 것을 확인하였다. 또한 수치해석적 방법을 통하여 복잡하며 좁은 세브론전열판으로 이루어진 유로내의 유동특성을 파악할 수 있었다.

  • PDF

Characteristic Analysis of Condensate Carry-Over According to the Surface Tensions in the Wet and the Dry Conditions on the Fin Surfaces of Heat Exchangers

  • Kim, Byeung-Gi;Lee, Su-Won;Ha, Sam-Chul;Ahn, Young-Chull;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1942-1949
    • /
    • 2006
  • Typically, condensate forms as droplets on the fin surfaces and may bridge the space between the fin surfaces. This is due to the dry characteristics inherent to the fin surface. The droplets increase the air-side pressure drop. In the case of high air velocities, these droplets may be blown off the fins and entrained in the air stream. To minimize the formation of condensate droplet, the wet ability of the fins must be improved. The carry-over velocity is affected by fin surface characteristics. To avoid carry-over in the air conditioner having the highest air velocity of 1.5 m/sec, the dynamic contact angle (DCA) should be at least lowly under $60^{\circ}$.

The Frost and Defrost Performances of Fin-and-Tube Heat Exchangers with Different Surface Treatment Characteristics (서로 다른 표면특성을 갖는 핀-관 열교환기의 착상과 제상 성능평가)

  • 최봉준;황준현;신종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.781-785
    • /
    • 2002
  • The effects of different surfaces on dry and wet frosting test were experimentally investigated. The results of experiment were compared by the performance evaluation coefficient (PEC). Results showed that the air-side pressure drop of lacquer coated evaporator increased by 5% as compared to the plasma treated one. It was also found that the Plasma coated evaporator is lower than lacquer coated one in the PEC ratio.

Effects on Refrigerant Maldistribution on the Performance of Evaporator (냉매의 불균일한 분배가 증발기의 성능에 미치는 영향)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.

Effects of Particle Concentrations on Friction Factors and Pressure Drops in a Horizontal Pipe (수평 관에서 고체입자 농도가 압력강하 및 마찰계수에 미치는 효과)

  • Ahn, S.W.;Lee, B.C.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.44-49
    • /
    • 2007
  • Generally, the economic concept of optimized design and operating conditions in fluidized bed heat exchangers can hardly be realized. Because the lack of fundamental knowledge about the particle flows, the optimum design of the fluidized bed heat exchanger is rather limited. In the present work, measurements are made on pressure drops and friction factors in the horizontal circular tube with solid particles in the circulating water. Two different solid particles of diameters of 3mm and 4mm are covered. The Reynolds numbers are ranged from 10,000 to 45,000. It is concluded that the friction factors for the particles of 4mm diameter are much higher than those for the particles of 3mm diameter. And at the lower particle concentration, the friction factors are strongly influenced by the fluid velocity rather than the particle concentration; However, the effect of the particle concentration on friction factors is also significantly higher at a higher particle concentration operating condition.

  • PDF