• Title/Summary/Keyword: Heat exchange

Search Result 766, Processing Time 0.03 seconds

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

Effect of the Heat Exchange between Low and High Temperature Refrigerant on the Heat Pump Performance (저온측과 고온측 냉매간 열교환이 열펌프의 성능특성에 미치는 영향)

  • 이건중;송현갑
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.12a
    • /
    • pp.211-218
    • /
    • 1999
  • The ambient air is commonly used as low-temperature heat sources for heat pump operation. However, the coefficient of performance (COP) of the air -water heat pump is decreased with the ambient air temperature drop. In this study to solve this problem , the AVACTHE(Automatic Variable Area Capillary Type Heat Exchanger) with 3 levels of heat exchange area(0, 1495.4, 1794.5$\textrm{cm}^2$) was installed in the refrigerant circuit of the heat pump. The AVACTHE effect on the performance of heat pump was tested with the ambient air temperature variation. The high level COP of the heat pump could be achieved by the AVACTHE installation when below -5$^{\circ}C$ of the ambient air temperature.

  • PDF

Feasibility study of ground source heat pump system according to the local climate condition (지역 기후 특성에 따른 지열시스템의 도입경제성 차이에 관한 연구)

  • Nam, Yujin
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.127-131
    • /
    • 2014
  • The ground source heat pump (GSHP) system is a kind of the temperature differential energy system using relatively stable underground temperature as heat source of space heating and cooling. This system can achieve higher performance of system than it of conventional air source heat pump systems. However, its superiority of the system performance is different according to installation location or local climate, because the system performance depends on the underground condition which is decided by annual average air temperature. In this study, in order to estimate the feasibility of the ground source heat pump system according to the local climate, numerical simulation was conducted using the ground heat transfer model and the surface heat balance model. The case study was conducted in the condition of Seoul, Daejeon, and Busan, In the result, the heat exchange rate of Busan was 34.33 W/m as the largest in heating season and it of Seoul was 40.61 W/m as the largest in cooling.

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

Thermal Influential factors of Energy pile considering Ground saturation (지반 포화조건을 고려한 에너지파일의 열적거동 인자분석)

  • Song, Jin-Young;Paek, Jin-Yeol;Yun, Tae-Sup;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.104-112
    • /
    • 2010
  • The thermal influential factor of energy pile system is investigated by considering the seasonal effect, saturation of ground, and fluid velocity based on the finite volume method. Analysis includes the evaluation of thermal resistance and corresponding heat exchange rate for each case. It is shown that the efficiency of heat exchange rate is more pronounced with higher fluid velocity due to the larger number of circulation for a given period. Through the parametric studies, it is also found that the degrees of saturation a little influenced thermal effect during 8 hours of operational scenario.

  • PDF

Basic Study on the Regenerator of Stirling Engine (I) -The influence of the heat exchange effectiveness of the regenerator on the engine power- (스털링기관용 재생기에 관한 기초연구(I) -재생기의 열교환 유효도가 기관 출력에 미치는 영향-)

  • 김태한;이정택;이시민
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The indicated power of Stirling engine was affected by the heat exchange effectiveness of the regenerator. The temperature difference of working fluid between the expansion and the compression space of Stilting engine depends on the heat exchange effectiveness of the regenerator. The influence of the temperature ratio of expansion space to compression space of Stirling engine on the indicated power was analyzed by using Schmidt analysis in this study. In the Stirring engine, as the temperature ratio increased, the indicated power generally decreased. Therefor, it is necessary to develope the regenerator of high effectiveness. The actual indicated power was shown 64.9 percent of the predicted indicated power in maximum and 47.2 percent of that in minimum due to increased dead volume of engine, the loss of flow friction and heat transfer in the regenerator.

Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner (분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers (수직밀폐형 지중 열교환기 형태에 따른 열효율 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Seung-Rae;Cho, Nam-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2393-2400
    • /
    • 2013
  • This research presents an experimental study of heat exchange rate of U, W, 2U and coil type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). The four types of GHEs were installed in a partially saturated dredged soil deposit of Incheon International Airport area. Thermal response tests (TRTs) were conducted for U, W and 2U type GHEs to deduce the ground thermal conductivity. Besides, TPTs were also conducted for U, W, 2U and coil type GHEs to evaluate heat exchanger rates under 100-hr continuous and 8-hr intermittent operation conditions for five days. Coil shaped GHE showed about twice higher thermal performance than the others GHEs. Furthermore, intermittent operation condition showed 30~40% higher heat exchange rates than continuous operation condition.

Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System (지열 열교환시스템 개발을 위한 지중 열유동 특성분석)

  • Lee Y. B.;Cho S. I.;Kang C. H.;Jung I. K.;Lee C. G.;Sung J. H.;Chung S. O.;Kim Y. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.