• 제목/요약/키워드: Heat emission rate

검색결과 257건 처리시간 0.023초

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

배기시스템 구성요소가 SI기관의 연소특성에 미치는 영향 (The effect of exhaust system components on combustion characteristics of SI engine)

  • 박경석;박세종;최석렬;손성만
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile, environmental problem as designing the exhaust system. Increasingly strict environmental regulations to lower fuel consumption and reduce emission. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency and combustion charateristics influenced by back pressure. This study furnish basic data for engineers, technicians.

콘 칼로리미터를 이용한 건축 바닥재의 연소거동과 가스유해성 평가 (Burning Behavior of Flooring Materials in the Cone Calorimeter and Evaluation of Toxic Smoke)

  • 이장원;이봉우;권성필;이병호;김희수;김현중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권1호
    • /
    • pp.45-53
    • /
    • 2008
  • 건축 내장재 중 바닥재의 연소거동을 살펴보기 위해 열류량 $50kWm^{-2}$의 콘 칼로리미터를 이용하여 측정하였다. 7종의 국산 바닥재를 이용하여 각각의 연소 거동을 최대 열방출률과 전체 열방출량 그리고 평균 열방출률을 통해서 살펴보았다. 실험한 결과 중밀도섬유판(MDF) 바닥재가 다른 바닥재에 비해 높은 열 방출 특성을 나타났다. 또한 MDF 바닥재는 연소 시 질량의 감소가 다른 바닥재보다 더 큰 것을 확인할 수 있었다. 연소 시 발생하는 가스 발생량을 측정하였는데, PE계 섬유판(PE fiberboard flooring)과 PVC계 plastic resin sheet에서 높은 일산화탄소와 이산화탄소의 발생량을 확인할 수 있었다. 비광소멸면적을 통해서 가스 평균 방출량을 살펴보면 일산화탄소나 이산화탄소와 같은 경향을 나타났다. 바닥재의 가스유해성 평가는 쥐의 행동 정지시간을 기준으로 측정하였다. 측정 결과 MDF 바닥재에서 유해성이 높은 것으로 측정되었다.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

탄소나노섬유를 열원으로 적용한 세탁물 건조기의 개발 (Development of the Dryer with a Heat Source of Carbon Nanofibers)

  • 이정환;원상연
    • 한국산업정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.25-34
    • /
    • 2018
  • 본 논문은 세탁물 건조기의 고효율과 건조성능 향상을 위한 탄소나노섬유의 열원(히팅모듈)을 설명하였고, 이 열원의 적용 가능성을 평가하는데 집중하였다. 제안된 히팅모듈의 설계를 위해, 탄소나노섬유램프의 표면온도와 표면온도분포특성에 관한 실험이 수행되었다. 그 램프의 표면온도는 램프에 흐르는 전류의 증가와 함께 선형적으로 증가하였고, 그 램프의 길이가 짧을수록 증가하는 패턴을 보였다. 제안된 히팅모듈은 건조효율, 세탁물의 수분증발률, 건조동작 중 드럼의 내부온도를 기반으로 평가되었다. 건조효율은 KS C 9319의 기준인 45%를 충족하였고, 수분증발률과 드럼의 내부온도는 각각 98.88%와 평균 $61.1^{\circ}C$로 S사의 제품과 대등한 건조성능을 보였다. 그 평가와 실제 건조실험 결과로부터, 제안된 탄소나노섬유램프 히팅모듈은 건조효율과 건조성능의 측면에서 세탁물 건조기의 열원으로 적용 가능할 것으로 판단되며, 높은 온도의 열원, 우수한 발열량, 원적외선 방출에 의한 건조성능의 향상과 세탁물의 살균효과를 얻을 수 있다. 추가적으로, 그 건조기들 사이에 건조효율 성능차이가 열원의 소비전력을 기반으로 상세히 분석되었다.

SI 가솔린 엔진의 과급 및 흡기가 엔진 성능에 미치는 영향에 대한 연구 (A Study About the Effect of Supercharging and Intake Charge on Engine Performance in Spark Ignition Gasoline Engine)

  • 김기복;진석준;김치원;윤창식;한성현
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, it is designed and used the test engine bed which is installed with turbocharger, and in addition to equipped using by oxygen adder. It has been controlled the oxygen volumetric fraction of intake air chrge, and supercharged flow rate into the cylinder of SI 4-stroke engine, and then, has been analyzed engine performance, combustion characteristics, and exhaust emission as analysis parameters. The tested parameters were the oxygen fraction and the variation of engine speed and air-fuel ratio.

EGR Cooler system을 장착한 건설기계용 대형디젤엔진의 성능에 관한 연구 (A Study on Characteristics of Performance by Heavy-Duty Diesel Engine on Construction Machine with EGR Cooler System)

  • 오상기;김진열;이승호;송호영
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.130-135
    • /
    • 2013
  • It is a research about the change in reduction efficiency and performance resulting from installation of the EGR cooler, which is the core technology reducing NOx in response to standards been tightened of exhaust controls for off-road vehicle. It can reduce NOx by altering combustion temperature and oxygen concentration by recycling high-temperature exhaust gas. The target engine was large diesel engine for construction machine through by which we were able to verify a rate of change in output and capabilities for a heat-exchange within cooler itself depending on the existence of EGR cooler system. We have acquired a emission reduction technology for a construction machine by testing the reduction performance and rate of change in output.

예혼합 연료에 따른 균일 예혼합 압축 착화 엔진의 연소특성 (Effect of Premixed Fuel on the Combustion Characteristics of Premixed Charge Compression Ignition Engine)

  • 황진우;김대식;류열;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.49-54
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixed fuel on the reduction of exhaust emissions in premixed charge compression ignition engine. The premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber. The pre-mixture is ignited by a small amount of diesel fuel directly injected into the cylinder. In the case of gasoline as a premixed fuel of the engine, $NO_x$ and smoke concentration of exhaust emissions were reduced compared with the conventional diesel engine. But in the event of diesel fuel for premixed fuel, the rate of smoke reduction was small compared with the case of gasoline as a premixed fuel. HC and CO emissions were increased at high premixed ratio in the case of two premixed fuels. The combustion characteristics of the engine such as the combustion pressure, the rate of heat release, and other characteristics are compared.

CNG 직접분사식 연소기에서의 연소 라디칼 특성 (Characteristics of Combustion Radical in CNG Direct Injection Vessel)

  • 최승환;조승완;이석영;정동수;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.58-65
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the combustion characteristics of stratified methane-air mixture under several initial charge conditions in the author's previous reports. The results showed that the improvement of thermal efficiency and reduction of heat loss was realized simultaneously by using 2-stage injection method. This paper deals with the reason why the stratified combustion has showed better combustion rate through the measurement and analysis of chemiluminescence of C $H^{*}$ and $C_{2}$$^{*}$ radicals. An optic fiber bundle is used to measure the local emission of C $H^{*}$ and $C_{2}$$^{*}$ radicals to map the relationship between the excess air ratio and local radical intensity ratio in the combustion vessel at 5 mm apart form the geometric center. The results show that there exist a relationship between the intensity ratio and the air-fuel ratio. It is revealed that the improvement of combustion rate in a lean-stratified mixture is realized through the 2-stage injection method. method.

Removal of iron oxide scale from feed-water in thermal power plant using superconducting magnetic separation

  • Nishijima, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.22-25
    • /
    • 2019
  • The superconducting magnetic separation system has been developing to separate the iron oxide scale from the feed water of the thermal power plant. The accumulation in the boiler lowers the heat exchange rate or in the worst case damages it. For this reason, in order to prevent scale generation, controlling pH and redox potential is employed. However, these methods are not sufficient and then the chemical cleaning is performed regularly. A superconducting magnetic separation system is investigated for removing iron oxide scale in a feed water system. Water supply conditions of the thermal power plant are as follows, flow rate 400 t / h, flow speed 0.2 m / s, pressure 2 MPa, temperature $160-200^{\circ}C$, amount of scale generation 50 - 120 t / 2 years. The main iron oxide scale is magnetite (ferromagnetic substance) and its particle size is several tens ${\mu}m$. As the first step we are considering to introduce the system to the chemical cleaning process of the thermal power plant instead of the thermal power plant itself. The current status of development will be reported.