• Title/Summary/Keyword: Heat emission rate

Search Result 257, Processing Time 0.032 seconds

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

Heat Storage Material by Using Phase Change Materials to Control Buildings Thermal Environment Characteristics (건축물 열환경 특성제어를 위한 상변화 축열재)

  • Yun, Huy-Kwan;Han, Seong-Kuk;Shim, Myeong-Jin;Ahn, Dae-Hyun;Lee, Woong-Mok;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 2010
  • Heat storage application techniques can be categorized into the sensible heat storage and the latent heat storage according to the method of heat storage. Heat storage is the way of saving remaining heat when heating and cooling loads are light, and then using it when the heating and cooling loads are heavy. Latent heat storage is defined as the method of saving heat by using substances which have high potential heat when phase change is in the range of a certain temperature and when heat storage space is small, compared to those of sensible heat storage and it is possible that absorption and emission of heat at a certain temperature. This study is conducted to save energy when either air-conditioning or heating is operated in a building. We have tried to find out the essential properties of matter and the optimum mixing rate about cement and gypsum for building materials, which have been widely used for proper phase change materials (PCM), when thermal environment property is applied. So we obtained the result of the cooling delay effect about 19% with heat storage mortar containing 3 wt% of PCM.

A Study on the Combustion Characteristics of Biomass using Cone- calorimeter (I) : the Case of Maple Leaves, Gingko Leaves, Bush, Pine Needles (콘 칼로리미터를 이용한 바이오매스의 연소특성에 관한 연구(I) - 단풍잎, 은행잎, 덤불, 솔잎에 대해서 -)

  • Park, Byung-Hyun;Park, Duck-Shin;Cho, Young-Min;Park, Eun-Young;Lee, Cheul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.459-469
    • /
    • 2005
  • In recent years, concerns have been growing globally regarding greenhouse gases. Open burning of biomass causes emission of a number of greenhouse and other gases and substances. This paper studied an analysis on the characteristics of four types of biomass using duel type cone calorimeter. Cone calorimeter is widely used for assessing combustibility of materials in Europe. As a result, we evaluated several characteristics of biomass, such as heat released rate, smoke production rate, CO, $CO_2$ production and mass loss rate, and so on. $CO_2$ is currently responsible for over $60\%$ of the enhanced greenhouse effect, and may be the most important contributor to future. $CO_2$ production for biomass in the range of $1.74\~1.99kg/kg$ is similar to previous research conducted by Bhattacharya et al. (2002a).

Study on the Fugitive Emissions of a PFA Lined Ball Valve through Helium Leak Detection (PFA 라이닝 볼밸브의 헬륨누설 검출 및 비산배출에 관한 연구)

  • Lee, Won-Ho;Kim, Dong-Yeol;Lee, Jong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.39-42
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used to the chemical/pharmaceutical industries, the semiconductor/LCD manufacturing processes, etc. with the high purity chemicals as working fluid. EPA stated that 60% of all fugitive emissions come from the valve stem packing in a typical petroleum or chemical processing plant. They monitor regulated components for leaks and maintain seal performance at acceptable levels. Korean industrial standards only deals with the bubble test for in-line leakage of valves, which has the detectable leak rate of $10^{-4}$ [$mbar{\cdot}L{\cdot}s^{-1}$], therefore, it is not sufficient to check fugitive emissions. In this study, we conducted Helium leak detection from a PFA lined ball valve and evaluated fugitive emissions according to ISO 15848-1, which has the detectable leak rate of $10^{-9}$ [$mbar{\cdot}L{\cdot}s^{-1}$], for manufacturing the high-reliable PFA lined ball valves against fugitive emissions.

Analysis on Combustion Characteristics of CRDi Single-cylinder Diesel Engine with Direct Needle-driven Piezo Injector (직접구동 피에조 인젝터의 CRDi 단기통 디젤엔진 연소 특성 분석)

  • Chung, Myungchul;Sung, Gisu;Kim, Sangmyung;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.108-115
    • /
    • 2014
  • In this study, experimental approaching method was applied under and single-cylinder engine to research the performance of direct needle-driven piezo injector (DPI) for CR direct-injection. As key-point factor of this DPI that relies on direct-acting operating of injector needle, unlike conventional hydraulic-servo, its nozzle needle can be directly driven by piezo actuator. Thus, effect of direct-acting injection of DPI on diesel combustion and emission characteristics was investigated under common-rail single-cylinder direct-injection engine, equipped with three different driving mechanism, including indirect-acting solenoid, piezo and DPI system. As main results, it found that a direct-acting piezo injector has higher of IMEP. And it has higher heat release rate during premixed combustion and mixing controlled combustion phase due to its higher heat release, even though nitrogen oxide (NOx) formations were increased slightly.

$CO_2^*$ Background Effect on $OH^*$ and $CH^*$ Chemiluminescence Intensities in a Gas Turbine Combustor (가스터빈 연소기에서 $CO_2^*$ 배경 강도가 $OH^*$$CH^*$ 화학 발광 강도에 미치는 영향)

  • Kim, Dae-Sik;Lee, Jong-Guen
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • The measurement of heat release rate is of great importance in the study of thermo-acoustic instability occurring in lean premixed combustion and the chemiluminescence emission has been used as an indicator of heat release in combustion instability studies primarily for its relative simplicity. This paper presents results of experimental study of flame chemiluminescence from an atmospheric, swirl-stabilized, turbulent lean premixed flame with a main emphasis on the effect of $CO_2^*$ background level in the $CH^*$ and $OH^*$ band. The test results show that the effect of $CO_2^*$ level in the $CH^*$ band is greater than that in the $OH^*$ band. Also, the background to peak ratio for both $CH^*$ and $OH^*$ bands can be expressed as a function of equivalence ratio, almost regardless of a change in the inlet velocity.

Heat and Flow Analysis in the HVAC Impeller for Mid-Size Car (중형차 HVAC 임펠러 내의 열유동 해석)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1503-1510
    • /
    • 2012
  • In this research, various cases of centrifugal impeller for HVAC system have been numerically analyzed by changing center angle of blades and length of outlet. Commercial CFD code, FLUENT has been used to calculate velocity, pressure, turbulence intensity, and temperature that can lead numerous results. Regardless of warming up, when the heater power level was increased, the temperature inside surrounding impeller also increased due to flowing outer air, but the temperature decreased because of flowing inner air. Consequently, the variation of central angle of blades and length of outlet led difference of velocity and flow rate which can reduce $CO_2$ in gas emission.

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

Development and Evaluation of a Novel Electro-mechanical Implantable Ventricular Assist System (전기-기계식 이식형 좌심실 보조 시스템의 개발 및 평가)

  • 조한상;김원곤;이원용;곽승민;김삼성;김재기;김준택;류문호;류은숙
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.349-358
    • /
    • 2001
  • A novel electro-mechanical implantable ventricular assist system is developed as a bridge to transplantation or recovery for patients with end-stage heart failure. The developed system is composed of an implanted blood pump, an external monitoring system which stores data, and a wearable system including a portable external driver and a portable power supply system. The blood pump is designed to be implanted into the left upper abdominal space and provides blood flow from the left ventricular apex to the aorta. The pulsatile blood flow is generated by a double cylindrical cam. There was mo excessive heat emission from the blood pump into the temperature-controlled chamber in the heat test and no stagnated flow within the blood sac by the observation in the flow visualization test. Animal experiments were performed using sheep and calves. The maximum assist flow rate reached 7.85L/min in the animal experiment. The evaluation results showed that the developed system was feasible for the implantable ventricular assist system. The long-term in vitro durability test and mid-term in vivo experiments are in progress and mow the modified next model is under development.

  • PDF

The comparison of radial and axial flow porous burners from viewpoint of output radiative heat transfer and emissions

  • Tabari, N. Ghiasi;Astaraki, M.R.;Arabi, A.H.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.285-295
    • /
    • 2012
  • In this paper, two types of porous burners with radial and axial flow have been modeled numerically and compared. For this purpose, governing equations were solved one-dimensionally for methane-air premix gas. The mechanism used in simulating combustion phenomenon was 15 stage reduced mechanism based on GRI3.0. In order to compare the two burners, the inlet flow rate and fuel-air ratio have been assumed equal for the two burners. The results of the study indicated that reduction in speed and increase in cross-section area in the direction of flow have a considerable influence on the behavior of radial burner in comparison to axial burner. Regarding temperature distribution inside the burner, it was observed that the two above mentioned factors can be influential in temperature of flame propagation region. Also, regarding distribution of CO and NO emission, the results indicate that the porous radial burner has lower emissions in comparison to the axial once. The output radiative heat transfer efficiency of the two burners was also compared and in this case also even the radial porous burner was found to be preferable.