• Title/Summary/Keyword: Heat element

Search Result 1,754, Processing Time 0.024 seconds

Contact Heat Transfer Coefficient for Finite Element Analysis in Warm Forging Processes (온간단조 공정의 계면열전달계수)

  • Kang J.H.;Ko B.H.;Jae J.S.;Kang S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.183-188
    • /
    • 2006
  • Heat transfer coefficients have great influence on finite element analysis results in elevated temperature forging processes. Experimentally calculated contact heat transfer coefficient is not suitable for one-time finite element analysis because analyzed temperature will be appeared to be too low. To get contact heat transfer coefficient for one-time finite element analysis, tool temperature in operation was measured with thermocouple and repeated finite element analysis was performed with experimentally calculated contact and cooling heat transfer coefficient. Surface temperature of active tool was obtained comparing measurement and analysis results. Contact heat transfer coefficient for one-time finite element analysis was achieved analyzing surface temperature between repeated finite element analysis and one-time finite element analysis results.

A Finite Element Analysis of Conjugate Heat Transfer Inside a Cavity with a Heat Generating Conducting Body (고체 열원이 존재하는 공동 내의 복합열전달 문제의 유한요소해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Yong, Ho-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.170-177
    • /
    • 2009
  • In the present study, a finite element analysis of conjugate heat transfer problem inside a cavity with a heat-generating conducting body, where constant heat flux is generated, is conducted. A conduction heat transfer problem inside the solid body is automatically coupled with natural convection inside the cavity by using a finite element formulation. A finite element formulation based on SIMPLE type algorithm is adopted for the solution of the incompressible Navier-Stokes equations coupled with energy equation. The proposed algorithm is verified by solving the benchmark problem of conjugate heat transfer inside a cavity having a centered body. Then a conjugate natural heat transfer problem inside a cavity having a heat-generating conducting body with constant heat flux is solved and the effect of the Rayleigh number on the heat transfer characteristics inside a cavity is investigated.

Evaluation of Thermal Characteristics of a Direct-Connection Spindle Using Finite Element Co-Analysis (유한 요소 해석을 활용한 직결 주축의 열적 특성 평가)

  • Kim, Tae-Won;Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.228-234
    • /
    • 2013
  • This study focuses on development of a finite element model for analysis of thermal characteristics of a direct-connection spindle of a machining center by joint simulation of heat transfer and thermal deformation. Two finite element analyses were carried out procedurally for heat transfer, first, to identify temperature distribution of components of the spindle and then for thermal deformation to identify their structural behavior based on the temperature distribution. It was assumed that the heat transfer between a component revolving and the surrounding air is identical to that between a flat plate and the running air on it and the heat transfer is based on a uniform surface heat flux for turbulent flow. The results from the analyses were compared with those from experiments to validate the finite element model.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

Mechanical Properties of Heat Exchanger Element with Higher Capacity Waste Heat Recovery PDC Clean Ventilation System (대용량 폐열회수 PDC청정 환기시스템용 열교환 소자의 기계적 특성)

  • Ahn, S.H.;Nam, K.W.;Ahn, B.H.;Kim, D.G.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-75
    • /
    • 2009
  • Recently, the higher capacity waste heat recovery PDC clean ventilation system has a tendency which is increasing due to the excellent energy reduction in factory, big building, and so on. This system was developed to complement the room environment which is deteriorated. However, the researches and technologies about this system were not well studied. Specially, the characteristic for heat exchanger element used to this system were not well known. Therefore, this study was carried out to evaluate the mechanical properties of the heat exchanger element as the core parts compose of this system. From results, tensile strength and elongation of the plate type heat exchanger element had about 10.11~14.32 kgf/$mm^2$ and 8.0~16.2%, respectively.

  • PDF

Study on the Adsorption and Desorption Enhance Effect of Oyster Shell Using Peltier Element (페르체소자를 이용한 굴패각의 흡착 및 탈착촉진효과에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the batch type system. The peltier element(thermoelectric device) is used for absorbing and releasing the adsorption and desorption heat generation. The cooling and heating effects of peltier element exist in this experiment and these effects are generally known phenomena among some references. The increase in electric current induced into peltier element is effectively release the heat generation of adsorption and desorption. Consequently, the non-dimensional adsorption and desorption amount would increase with increase in electric current. However, in the case of adsorption, the increase of induced current into peltier element, the heat of cold side can not release sufficiently. So the heat of hot side of peltier is transferred into the cold side.

COMPARISON OF FINITE ELEMENT SOLUTIONS WITH THOSE OF ANSYS-FLUENT IN A CONJUGATE HEAT TRANSFER PROBLEM (복합 열전달 해석에서 유한요소 해와 Ansys-Fluent 해의 비교)

  • Jeon, B.J.;Choi, H.G.;Lee, D.H.;Ha, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.86-87
    • /
    • 2011
  • In this paper, a conjugate heat transfer around cylinder with heat generation was investigated. Both forced convection and conduction was considered in the present finite element simulation. A finite element formulation based on SIMPLE type algorithm was adopted for the solution of the incompressible Navier-Stokes equations. We compared the finite element solution with that of Ansys fluent 12.0, in which finite volume method was employed for spatial discretization. It was found that the finite element method gave more accurate solution than Ansys fluent 12.0. Further, it was found that the maximum temperature inside cylinder is positioned at the rear side due to the flow separation.

  • PDF

Calculation of Heat Transfer Coefficients by Steady State Inverse Heat Conduction (정상상태의 열전달계수 예측을 위한 최적화기법의 열전도 역문제에 관한 연구)

  • 조종래;배원병;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 1997
  • The inverse heat conduction problems is the calculation of surface heat transfer coefficients by utilizing measured temperature. The numerical technique of finite element analysis and optimizition is introduced to calculate temperatures and heat transfer coefficients. The calculated heat transfer coefficients and temperature distribution are good agreement with the results of direct analysis. The inverse method has been applied to the control valve of nuclear power plant.

  • PDF

A Study on Slide Way Deformation from High Frequency Heat Treatment by Finite Element Method (유한요소법을 이용한 고주파 열처리시 안내면 변형에 관한 연구)

  • 홍성오;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.57-64
    • /
    • 2002
  • Finite element program(ANSYS) estimated thermal deformation quantity in high frequency heat treatment process of a machine tool fred drive system slideway and apply deformation quantity in roughing process. Having processed the heat treatment minimizing methods of the quantity of deformation heat treatment process. Having done heat treatment with high frequency after taper processing with considering the existed heat treatment generating the quantity of deformation, existed quantity of deformation can be reduced down to 80%, consequently productivity and material saving can be achieved. When high frequency heat treatment finite element method estimated deformation quantity at difference temperature and time, it is progress at cost don and saved time.

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.