• Title/Summary/Keyword: Heat distribution

Search Result 2,932, Processing Time 0.031 seconds

Experimental Simulation of Local External Forcing of the Contained Rotating Flow (회전반 유체실험에서 국지적 외력의 실험적 모의)

  • Yi, Chang-Won;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2000
  • Simulation of local external forcing and its response in the rotation table experiment has been investigated. Spatially-uniform external forcings have been applied in many experimental studies, however, based on the fact that the north-south distribution of the wind-stress curl and the existence of local maximum of the sea surface heat loss in the northern part of the East Sea, new method of combined effects of local forcings has been employed in separate experiments. Carefully designed local source or sink at the bottom of the cylindrical container can produce horizontal pressure gradient within the Ekman layer, and consequently the interior also attains the same pressure gradient that produces geostrophic interior circulation. In order to keep free surface during the local-surface cooling, a side-wall cooling method is suggested. For the various type of local forcing including the effects local cooling and the periodic change of local wind-stress curl, western-boundary flow in terms of its strength, position of separation from the boundary have been observed.

  • PDF

Controlled Synthesis of Single-Walled Carbon Nanotubes

  • Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.2-2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWNTs) have been considered as a promising candidate for nextgeneration electronics due to its extraordinary electrical properties associated with one-dimensional structure. Since diversity in electronic structure depends on geometrical features, the major concern has been focused on obtaining the diameter, chirality, and density controlled SWNTs. Despite huge efforts, the controlled synthesis of SWNTs has not been achieved. There have been various approaches to synthesize controlled SWNTs by preparation of homogeneously sized catalyst because the SWNTs diameter highly depends on catalyst nanoparticles size. In this study, geometrically controlled SWNTs were synthesized using designed catalytic layers: (a) morphologically modified Al2O3 supporting layer (Fe/Al2O3/Si), (b) Mo capping layer (Mo/Fe/Al/Si), and (c) heat-driven diffusion and subsequent evaporation process of Fe catalytic nanoparticles (Al2O3/Fe/Al2O3/Si). These results clearly revealed that (a) the grain diameter and RMS roughness of Al2O3 supporting layer play a key role as a diffusion barrier for obtaining Fe nanoparticles with a uniform and small size, (b) a density and diameter of SWNTs can be simultaneously controlled by adjusting a thickness of Mo capping layer on Fe catalytic layer, and (c) SWNTs diameter was successfully controlled within a few A scale even with its fine distribution. This precise control results in bandgap manipulation of the semiconducting SWNTs, determined by direct comparison of Raman spectra and theory of extended tight binding Kataura plot. We suggest that these results provide a simple and possible way for the direct growth of diameter, density, and bandgap controlled SWNTs by precise controlling the formation of catalytic films, which will be in demand for future electronic applications.

  • PDF

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

AES Analysis of Au, Au/Cr, Au/Ni/Cr and Au/Pd/Cr Thin Films by the Change of Substrate Temperature and Annealing Temperature (기판온도와 열처리온도의 변화에 따른 Au/Cr, Au/Ni/Cr 및 Au/Pd/Cr 다층박막의 AES 분석)

  • Yoo, Kwang Soo;Jung, Hyung Jin
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.217-223
    • /
    • 1993
  • Thin films of the Au/Cr, Au/Ni/Cr and Au/Pd/Cr systems were deposited on alumina substrates at ambient temperature and $250^{\circ}C$ in a high-vacuum resistance heating evaporator and annealed at $300^{\circ}C$, $450^{\circ}C$ and $600^{\circ}C$ for 1 hour in air, respectively. The film thicknesses of Au, Ni(or pd), and Cr were $1000{\AA}$, $300{\AA}$, and $50{\AA}$, respectively. The substrate temperature during deposition and the post-deposition annealing temperature affected the sheet resistance of thin-films due to the inter-diffusion of each layer. As a result of Auger depth profile analysis, in the Au/Cr system Cr already diffused out to Au surface during deposition at the substrate temperature of $250^{\circ}C$ and Au distribution changed after heat treatment. In the Au/Ni/Cr and Au/Pd/Cr systems, diffusion phenomena of Ni and Pd were found and especially Ni (approximately 45 at.%) diffused out to Au surface and oxidized.

  • PDF

Characteristics of WO3-CuO Powder Mixture Prepared by High-Energy Ball Milling in a Bead Mill for the Synthesis of W-Cu Nanocomposite Powder (W-Cu 나노분말 합성을 위해 비드밀에서 고에너지 볼밀링 공정에 의해 제조된 WO3-CuO 혼합분말의 특성 연구)

  • Park, Hae-Ryong;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.406-413
    • /
    • 2017
  • A Nanosized $WO_3$ and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of $WO_3-CuO$ powder mixtures is investigated. The results show that the ball-milled $WO_3-CuO$ powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of $37m^2/g$, and powder mean particle size ($D_{50}$) of $0.57{\mu}m$. The $WO_3-CuO$ powder mixtures milled for 10 h are heat-treated at different temperatures in $H_2$ atmosphere to produce W-Cu powder. The XRD results shows that both the $WO_3$ and CuO phases can be reduced to W and Cu phases at temperatures over $700^{\circ}C$. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.

Development of a Sensor Fusion System for Visible Ray and Infrared (적외선 및 가시광선의 센서 융합시스템의 개발)

  • Kim, Dae-Won;Kim, Mo-Gon;Nam, Dong-Hwan;Jung, Soon-Ki;Lim, Soon-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2000
  • Every object emits some energy from its surface. The emission energy forms surface heat distribution which we can capture by using an infrared thermal imager. The infrared thermal image may include valuable information regarding to the subsurface anomaly of the object. Since a thermal image reflects surface clutter and subsurface anomaly, we have difficulty in extracting the information on the subsurface anomaly only with thermal images taken under a wavelength. Thus, we use visible wavelength images of the object surface to remove exterior clutter. We, therefore in this paper, visualize the infrared image for overlaying it with a visible wavelength image. First, we make an interpolated image from two ordinary images taken from both sides of an infrared sensor. Next, we overlay the intermediate image with an infrared image taken from the infrared camera. The technique suggested in this paper can be utilized for analyzing the infrared images on non-destructive inspection against disaster and for safety.

  • PDF

Computer Simulation of Temperature Parameter for Diamond Formation by using Hot- Filament Chemical Vapor Deposition (온도 매개 변수의 컴퓨터 시뮬레이션을 통한 HF-CVD를 이용한 다이아몬드 증착 거동 분석)

  • Song, Chang-Won;Lee, Yong-Hui;Choe, Su-Seok;Hwang, Nong-Mun;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.54-54
    • /
    • 2018
  • To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in the hot filament chemical vapor deposition (HFCVD) system. In this study the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16 and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software, ANSYS-FLUENT. To account for radiative heat-transfer in the HFCVD reactor, the discrete ordinate (DO) model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512 ~ 2802 K, and 1076 ~ 1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with experimental temperatures measured using a 2-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  • PDF

Temperature Change Analysis for Land Use Zoning Using Landsat Satellite Imagery (Landsat위성영상에 의한 용도지역 온도변화분석)

  • Jung, Gil-Sub;Koo, Seul;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • The land use has been changed artificially and caused the result of temperature increase of city compared with the outside of city or region of park and forest. The purpose of this research is to analyze the change of the urban surface temperature with land use zoning in Jinju using Landsat TM/$ETM^+$ imagery and to provide the correlation between NDVI(Normalized Difference Vegetation Index) and urban surface temperature change. The results presented that the spatial distribution of urban surface temperature was depending on the change of NDVI values on land use zoning. Considering to the average temperature by land use zoning, industrial area was the highest temperature but green area was the lowest temperature. Also as a result of comparing the correlation between surface temperature and NDVI, the green and residential area had higher correlation values than the commercial and industrial area. These results will be played a part as one of the major factors for implementing the sustainable urban planning considering the urban heat island effect problem.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Isolation of Amylolytic Bifidobacterium sp. Int-57 and Characterization of Amylase

  • Ji, Geun-Eog;Han, Hee-Kyung;Yun, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 1992
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic microorganisms. The distribution of amylolytic microorganisms in the human large intestinal tract was investigated in various individuals of differing ages using anaerobic culture techniques. A large percentage of the amylolytic microorganisms present belonged to the Genus Bifidobacteria. The number of Bifidobacteria increased significantly at two years of age. Adults and children above 2 years old carried about $0.8{\times}10^9-2.0{\times}10^{10}$ colony forming units (CFU/gram) of amylolytic Bifidobacteria. Among these amylolytic Bifidobacteria, Int-57 was chosen for further studies. Between 65% and 85% of the amylase produced was secreted and the remaining amylase was bound to the cell wall facing the outside. Amylase production could be induced by starch in a stable form. When cells were grown on maltose or glucose, amylase production was much lower than on starch and amylase activity disappeared after 24 hours growth on these media. Partially purified enzymes showed optimum activity at a temperature of $50^{\circ}C$ and at an optimum pH of 5.5, respectively. Heat treatment at $70^{\circ}C$ for 30 minutes almost completely inactivated amylase. The hydrolysis products of starch were mainly maltose and maltotriose. Soluble starch, amylose, amylopectin, and $\gamma$-cyclodextrin($\gamma$-CD) were easily hydrolyzed. The rate of hydrolysis of $\alpha$-CD and $\beta$-CD was slower than that of $\gamma$-CD. Carboxymethyl cellulose, $\beta$-1, 3-glucan and inulin were not hydrolyzed.

  • PDF