Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.5.406

Characteristics of WO3-CuO Powder Mixture Prepared by High-Energy Ball Milling in a Bead Mill for the Synthesis of W-Cu Nanocomposite Powder  

Park, Hae-Ryong (Department of Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Ryu, Sung-Soo (Department of Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.24, no.5, 2017 , pp. 406-413 More about this Journal
Abstract
A Nanosized $WO_3$ and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of $WO_3-CuO$ powder mixtures is investigated. The results show that the ball-milled $WO_3-CuO$ powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of $37m^2/g$, and powder mean particle size ($D_{50}$) of $0.57{\mu}m$. The $WO_3-CuO$ powder mixtures milled for 10 h are heat-treated at different temperatures in $H_2$ atmosphere to produce W-Cu powder. The XRD results shows that both the $WO_3$ and CuO phases can be reduced to W and Cu phases at temperatures over $700^{\circ}C$. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.
Keywords
W-Cu; High energy ball milling; Nanocomposite powder; Sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. V. Sebastian: Int. J. Powder Metall., 17 (1981) 297.
2 B. L. Mordike, J. Kaczmar, M. Kielbinski, and K. U. Kanier: Powder Metall. Int., 23 (1991) 91.
3 R. M. German, K. F. Hens, J. L. Johnson: Int. J. Powder Metall., 30 (1994) 205.
4 T. B. Massalski: Binary Phase Diagram, 2nd ed., ASM, Metal Parks, Ohio (1990) 1503.
5 W. D. Kingery: J. Appl. Phys., 30 (1959) 301.   DOI
6 W. J. Huppmann and W. Bauer: Powder Metall., 18 (1975) 249.   DOI
7 I. H. Moon, J. S. Lee: Powder Metall., 22 (1979) 5.   DOI
8 J. L. Johnson and R. M. German: in Proceedings of the International Conference & Exhibition on Powder Metallurgy & Particulate Materials, vol. 3 of Advances in Powder Metallurgy and Particulate Materials, pp. 35-46, Metal Powder Industries Federation, June 1992.
9 J. S. Lee and T. H. Kim: Nanostruc. Mater., 6 (1996) 691.
10 I. H. Moon and E. P. Kim: P. Petzow: Powder Metall., 41 (1998) 51.   DOI
11 S. H. Hong and B. K. Kim: Mater. Lett., 57 (2003) 2761.   DOI
12 J. Cheng, P. Song, Y. Cai and Y. Xia: Mater. Sci. Eng. A, 488 (2008) 453.   DOI
13 M. Hashempour, H. Razavizadeh, H. R. Rezaie and M. T. Salehi: Mater. Charact., 60 (2009) 1232.   DOI
14 J. C. Kim and I. H. Moon: Nanostruct. Mater., 10 (1998) 283.   DOI
15 T. Aboud, B. Z. Weiss and R. Chaim: Nanostruct. Mater., 6 (1995) 405.   DOI
16 D. G. Kim, K. W. Lee, S. T. Oh and Y. D. Kim, Mater. Lett., 58 (2004) 1199.   DOI
17 E. Ahmadi, M. Malekzadeh et al.: Int. J. Refract. Met. Hard Mater., 28 (2010) 445.
18 Lei Wan, Jigui Cheng, Peng Song, Yonghong Wang and Tao Zhu: Int. J. Refract. Met. Hard Mater., 29 (2011) 429.   DOI
19 K. S. Hwang, C. P. Yu, C. K. Yang, C. H. Yeh and L. Y. Wang: Powder Metall., 46 (2003) 113.   DOI
20 P. K. Sahoo, S. S. K. Kamal, M. Premkumar, B. Sreedhar, S. K. Srivastava and L. Durai: Int. J. Refract. Met. Hard Mater., 29 (2011) 547.   DOI
21 S. S. Ryu, S. K. Lee and D. H. Yoon: J. Electroceram., 18 (2007) 243.   DOI
22 M. Inkyo, T. Tahar, T. Iwaki, F. Iskandar, C. J. Jr. Hogan and K. Okuyama: J. Colloid Interface, 304 (2006) 535.   DOI
23 S. S. Ryu, H. R. Park, H. T. Kim and Y. D. Kim: J. Mater Sci., 47 (2012) 7099.   DOI
24 S. S. Ryu, H. R. Park, Y. D. Kim and H. S. Hong: Int. J. Refract. Met. Hard Mater., 65 (2017) 39.   DOI
25 M. H. Maneshian, A. Simchi and Z. R. Hesabi: Mater Sci. Eng. A, 445-446 (2007) 86.   DOI