• 제목/요약/키워드: Heat current

Search Result 2,159, Processing Time 0.03 seconds

Characteristic analysis of components of a high temperature superconducting power supply using YBCO coated conductor (YBCO CC을 사용한 초전도전원장치의 요소특성 해석)

  • Yoon, Yong-Soo;Cho, Dae-Ho;Park, Dong-Kuen;Yang, Seong-Eun;Kim, Ho-Min;Chung, Yoon-Do;Bae, Duck-Kwon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.40-45
    • /
    • 2009
  • Many superconductor applications such as MRI and SMES must be operated in persistent current mode to eliminate the electrical ohmic loss. This paper presents the characteristic analysis of the high temperature superconducting (HTS) power supply made of YBCO coated conductor (CC). In this research, we have manufactured the HTS power supply to charge the 0.73 mH HTS double-pancake magnet made of YBCO CC. Among the all design parameters, the heater triggerring time and magnet applying time were the most important factors for the best performance of the HTS power supply. In this paper, three-dimensional simulation through finite element method (FEM) was used to study the heat transfer in YBCO CC and the magnetic field of the magnetic circuit. Based upon these results, the final operational sequence could be determined to generate the pumping current. In the experiment, the maximum pumping current reached about 16 A.

Operating Properties for a Resistive SFCL of YBCO Thin Films (YBCO 박막의 저항형 초전도 한류기에 대한 동작 특성)

  • Choe, Hyo-Sang;Hyeon, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dol;Kim, Sang-Jun;Mun, Seung-Hyeon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.537-543
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter (SFCL) of a meander type based on a YBCO film with the meander cross section of 5 $\times$ $10^{-6}$$cm^2$, and performed current limitation experiments. The film was coated quench current was 9.6 Apeak at 60 Hz, and the fast quench time was 0.63 msec. The resistance of the limiter continuously increased for three cycles dut to the temperature rise in the gold layer. The temperature of the current limiting element reached the room temperature in 11 msec, $150^{\circ}C$ in 54 msec after quench, and was saturated afterwards. For $45^{\circ}$and $90^{\circ}$faults the fast quench times were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because the fault occurred when the current was either increasing or at the peak value. This limiter effectively limited the fault current to about 1/5 of the potential current with no SFCL right after the fault and to about 1/8.5 in three cycles. We confirmed that the gold layer effectively carried out the role of heat dissipation as the SFCL was quenched.

  • PDF

Design and Sensitivity Analysis of Design Factors for Induction Heating System (수치해석을 통한 유도가열 코일의 설계 및 설계인자의 민감도 해석)

  • Oh, Dong-Wook;Kim, Tae Hoon;Do, Kyu Hyung;Park, Jang Min;Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.233-240
    • /
    • 2013
  • Rapid and homogeneous heating in heat treatment has been a challenging engineering issue throughout a heating temperature over $1,000^{\circ}C$. Induction heating has been widely used in field of heat treatment compared with conventional heating system. Advantages in homogeneous heating, simple fabrication, and repeatable use can be efficiently made with the induction heater. In this paper, numerical analysis of an induction coil system for heat flux gauge heating is performed. The effect of configuration on the heating performance was considered in various cases of the coil radius, distance between the winding, relative height difference between the heat flux gauge and the coil, and the applied current frequency. Temperature distribution within the heat flux gauge at frequency-steady state was calculated with a finite element method. Sensitivity analysis was also performed and the relative importance of 2 key parameters; coil radius, distance between the winding, were taken as main contributors for induction heating.

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

Experimental Investigation of Flow Boiling Heat Transfer of R-410A and R-134a in Horizontal Small Tubes

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1141-1146
    • /
    • 2009
  • Experimental investigation on two-phase flow boiling heat transfer of R-410A and R-134a in horizontal small tubes is reported. The pressure drop and local heat transfer coefficients were obtained over heat flux range of 5 to $40\;kW/m^2$, mass flux range of 70 to $600\;kg/m^2s$, saturation temperature range of 2 to $12^{\circ}C$, and quality up to 1.0 in test section with inner tube diameters of 3.0 and 0.5 mm, and lengths of 2000 and 330 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects of mass flux, heat flux, and inner tube diameter, on pressure drop and heat transfer coefficient are presented. The experimental results are compared against several existing correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes is developed.

  • PDF

A Study on Analysis of Complex Heat Sink System for High Efficiency LED Thermal Effect (고효율 LED 방열효과 증대를 위한 융합형 Heat Sink 장치 방열 해석)

  • Kang, Chang-Soo;Kang, Ki-Sung
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, did numerical simulation to confirm LED module for lighting and protection against heat special quality of heat sink device. Analysis was gone dividing on case that emitting light side turns normalcy department considering that eat of device according to usage and case that turn down looking being street lamp of 200 W or security appointment lighting device analysis case, and also, volume of thermal element divides on big case and small case and analyzed. Confirmed that can do so that may discharge LED's thermal value to outside enough in analysis wave and current heat sink shape, and investigated that difference of protection against heat performance according to position of device and size of thermal element appears.

Boiling Heat Transfer Characteristics of R-410A in $300{\mu}m$ Horizontal Smooth Microchannel ($300{\mu}m$ 수평미세관내 R-410A의 비등열전달 특성)

  • Choi, Kwang-Il;Ardiyansyah, Ardiyansyah;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.262-268
    • /
    • 2008
  • The present paper dealt with flow heat transfer characteristics of R-410A vaporization in horizontal smooth microchannel. The test sections were made of stainless steel tube with inner diameters of 300 mm and length of 300 mm. The refrigerant was supplied with mass flux range of 260-600 kg/$m^2s$ and applied under operating heat flux range of 5-20 kW/$m^2$ using a direct electric current heating method. The in let saturation temperature was set at $10^{\circ}C$ and vapor quality up to 1.0. The influences of mass flux, heat flux and inner tube diameter on local heat transfer coefficients were presented. Comparison with existing heat transfer coefficient correlations was performed. An improved heat transfer coefficient correlation for refrigerant vaporization in microchannel based on superposition model was developed with a mean deviation of 14.01%.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Junghwan;Yoo, Hoseon;Lee, Jae-Heon;Moon, Seungjae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.

Boiling Heat Transfer Characteristics of R-290 in Horizontal Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.68-73
    • /
    • 2006
  • The present paper deals with an experimental study of boiling heat transfer characteristics of R-290, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method applied for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. The experiments were conducted with R-290 with purity of 99.99% at saturation temperature of 0 to $10^{\circ}C$. The range of mass flux is $50{\sim}250kg/m^2s$ and heat flux is $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increases with increasing mass flux and saturation temperature, wherein the effect of mass flux is higher than that of the saturation temperature, whereas the heat flux has a low effect on increasing heat transfer coefficient. The significant effect of mass flux on heat transfer coefficient is shown at high quality, the effect of heat flux on heat transfer coefficient at low quality shows a domination of nucleate boiling contribution. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. Zang et al.'s correlation(2004) gave the best prediction of heat transfer coefficient.

  • PDF