• Title/Summary/Keyword: Heat current

Search Result 2,151, Processing Time 0.033 seconds

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Elementary Schooler's Recognition and Understanding of the Scientific Units in Daily Life (초등학교 학생들의 생활 속 과학단위 인식과 이해)

  • Kim, Sung-Kyu
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.235-250
    • /
    • 2012
  • This paper aims to find out whether or not elementary school students recognize and understand scientific units that they encounter in their everyday life. To select appropriate units for the survey, first, scientific units in elementary textbooks of science and other science related subjects were analyzed. Then it was examined how these units were related to the learners' daily life. The participants in the current survey were 320 elementary school 6th graders. A questionnaire consisted of 11 units of science, such as kg for mass, km for distance, L for volume, V for voltage, s for time, $^{\circ}C$ for temperature, km/h for speed, kcal for heat, % for percentage, W for electric power, pH for acidity, which can often be seen and used in daily life. The students were asked to do the following four tasks, (1) to see presented pictures and select appropriate scientific units, (2) to write reasons for choosing the units, (3) to answer what the units are used for, and (4) to check where to find the units. The data were analyzed in terms of the percentage of the students who seemed to well recognize and understand the units, using SPSS 17.0 statistical program. The results are as follows: Regarding the general use of the units, it was revealed that almost the same units were repeated in science and other subject textbooks from the same grade. With an increase of the students' grade more difficult units were used. As for the use of each unit, it was found that they seemed to relatively well understand what these units kg, km, L, $^{\circ}C$, kcal, km/h, and W stand for, showing more than 91% right. However, the units of V, s, in particular, %, and pH did not seem to be understood. With respect to the recognition of the units, most students did not recognize such units as L for volume and pH for acidity, probably because the units are difficult at the elementary level in comparison to other scientific units. The students indicated that schools were the best place where they could learn and find scientific units related to life, followed by shops/marts, newspapers/broadcasting, streets/roads, homes, and others in that order. The results show that scientific unit learning should be conducted in a systematic way at school and that teachers can play a major role in improving students' understanding and use of the units.

  • PDF

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.

Research Trends and Future Directions for R&D Vitalization of Domestic Dairy Industry (국내 유가공산업의 R&D활성화를 위한 연구 동향과 방향)

  • Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Domestic dairy industry is now standing at the crossroad for planning next fifty years, mainly because economic and environmental situations surrounding Korean peninsula are fast changing. For the aspects of dairy consumption, fresh milk consumed less, while consumption of the other milk and dairy products is slightly increasing every year. In 2010, it is approximately estimated that 1,939,000 tons of raw milk was used and the supply would be short by about 35,000 tons, based on the amounts in the previous year. Currently, multilateral negotiations against US and EU are underway. When it will be in effect in the future, significant damage would be expected in the dairy and livestock sectors, leading to cut domestic milk supply. Quality of farm-gate milk is graded as 1A on average 90% or more, loaded with very low in microbial and somatic cell counts. Therefore, policy implications have to be placed toward switch currently the UHT processing method to Pasteurization or the LTLT technology, by which natural flavors and nutrients in milk mostly remain after heat treatment. Domestic cheese products comprise only 10% and the rest is occupied by the various kinds of imported natural products. The market size keeps increasing up to 65,423,000 tons last year. When it comes to vitalization of our natural cheese industry, cheese whey, which is a main by-product in cheese manufacture, is a critical issue to be solved and also "On-Farm Processing" would be combined with a growth of big dairy companies when few immediate issues among the relevant regulations will be eased and alleviated in the near future. Fermented milk market is recorded as a single area of gradual increase in the past 10 years, Korea. Fermented yogurts with health claims targeted stomach, liver, and intestine are popular and has grown fast in sales amounts. In this context, researches on beneficial probiotic lactic acid bacteria are one of the important projects for domestic milk and dairy industries. Labelling regulations on efficacy or health-promoting effects of functional dairy products, which is the most important issue facing domestic dairy processors, should be urgently examined toward commercial expression of the functionality by lawful means. Colostrum, a nutrition-rich yellowish fluid, is roaded with immune, growth and tissue repair factors. Bovine colostrum, a raw material for immune milk preparations and infant formula, can be used to treat or prevent infections of the gastrointestinal tract. Nanotechnology can be applied to develop new milk and dairy products such as micro-encapsulated lactase milk for consumers suffering lactose intolerance. Raw milk is suggested to be managed by its usage in the processing line because imbalance of supply and demand is structural problem in every country and thus the usage systems as in the advanced dairy countries is worth of bench-marking to stabilize milk supply and demand. Raw milk produced is desirable to divide into the three parts; domestic, import, and buffering purposes. It is strongly recommended that a domestic dairy control center as an institutional framework should be urgently established as is Dairy Board in New Zealand and Australia. Lastly, government policy should be directed to foster the highly-educated people who are majoring in Dairy Sciences or working in the dairy industry by means of financial support in studying and training abroad as well.

  • PDF

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Analysis of Misconceptions on Oceanic Front and Fishing Ground in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 조경 수역 및 어장에 관한 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Kang, Chang-Keun;Kim, Chang-Sin
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.504-519
    • /
    • 2020
  • Oceanic fronts, which are areas where sea water with different properties meet in the ocean, play an important role in controlling weather and climate change through air-sea interactions and marine dynamics such as heat and momentum exchange and processes by which properties of sea water are mixed. Such oceanic fronts have long been described in secondary school textbooks with the term 'Jokyung water zone (JWC hereafter) or oceanic front', meaning areas where the different currents met, and were related to fishing grounds in the East Sea. However, higher education materials and marine scientists have not used this term for the past few decades; therefore, the appropriateness of the term needs to be analyzed to remove any misconceptions presented. This study analyzed 11 secondary school textbooks (5 middle school textbooks and 6 high school textbooks) based on the revised 2015 curriculum. A survey of 30 secondary school science teachers was also conducted to analyze their awareness of the problems. An analysis of the textbook contents related to the JWC and fishing grounds found several errors and misconceptions that did not correspond with scientific facts. Although the textbooks mainly uses the concept of the JWC to represent the meeting of cold and warm currents, it would be reasonable to replace it with the more comprehensive term 'oceanic front', which would indicate an area where different properties of sea water-such as its temperature, salinity, density, and velocity-interact. In the textbooks, seasonal changes in the fishing grounds are linked to seasonal changes in the North Korean Cold Current (NKCC), which moves southwards in winter and northwards in summer; this is the complete opposite of previous scientific knowledge, which describes it strengthening in summer. Fishing grounds are not limited to narrow coastal zones; they are widespread throughout the East Sea. The results of the survey of teachers demonstrated that this misconception has persisted for decades. This study emphasized the importance of using scientific knowledge to correct misconceptions related to the JWC, fishing grounds, and the NKCC and addressed the importance of transferring procedures to the curriculum. It is expected that the conclusions of this study will have an important role on textbook revision and teacher education in the future.

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy (나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도)

  • Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.

Study on Effect of Varience of Physiological Responses in Color Foot Reflexology Using Color Light (컬러광을 활용한 발반사요법이 인체 생리적 반응 변화에 미치는 영향에 관한 연구)

  • Jin, Hye-Ryeon;Yu, Mi;Park, Kyung-Jun;Kim, Nam-Gyun;Chung, Sung-Whan;Kim, Dong-Wook
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.187-196
    • /
    • 2010
  • Recently, people have been suffering from stress-related fatigue and psychological disorders. Most people depend on medicine for pain relief; many treat pain also through alternative medicine or replacement therapy. However, drug therapy has many side effects, including increased stress after the therapy. In comparison, alternative therapies such as massage and foot reflexology are less damaging to the body, and such therapies can be provided without physical or psychological discomfort. In this regard, the author had previously co-developed color foot reflexology, which combines the merits of color therapy and foot reflexology; color foot reflexology has been shown to have beneficial effects without undue pain. This study investigates the effects of color foot reflexology on the physiological response of the body by comparing the body’s response to the signal with that to the placebo. Healthy adult subjects were selected for the experiment, which was conducted under optimal experimental conditions and design. The results indicated that when stimulated, parasympathetic nerves increased in HRV and that blood pressure, pulse, body heat, peripheral blood flow were dramatically activated. However, the results for the placebo indicated minimal changes or irregular outcomes. The results provide strong evidence for the beneficial effects of the color foot reflexology instrument on the autonomic nervous system and on the physiological response of the body. Future research is warranted to verify the results of the current study by examining patients suffering from diseases and disorders arising from irregular physiological functions in the context of the foot.

  • PDF

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.