• Title/Summary/Keyword: Heat and moisture exchangers

Search Result 11, Processing Time 0.02 seconds

A Case of Intractable Tracheitis Treated by Heat-Moisture Exchangers in a Total Laryngectomized Patient (열가습 여과기로 치료한 후두전적출 환자의 난치성 기관염 1예)

  • Koo, Beom Mo;Moon, Seong Kyu;Kim, Seung Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.31 no.2
    • /
    • pp.87-91
    • /
    • 2020
  • The tracheostomy directs external air into the airway tract. This process causes mucosal dryness, irritation and inflammation in the tracheo-bronchial tree. In order to prevent such problems, several methods are applied; ointment application, humidification and careful suction etc. The heat-moisture exchanger (HME) is commercially sold device that assists heating and humidification of the inhaled air. The authors experienced successful treatment outcome of intractable tracheitis caused by repetitive and vigorous intra-tracheal suction by applying HME in a total laryngectomized patient. We report an interesting and didactic case with a brief literature review.

Experimental Study on Thermal Conductivity and Viscosity of Grouts for Backfilling Ground Heat Exchanger (수직 밀폐형 자중 열교환기용 뒤채움재의 열전도 및 점도특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hyo-Pum;Woo, Sang-Baik
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.38-46
    • /
    • 2007
  • In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

Experimental Study on Thermal Conductivity and Viscosity of Grouts for Backfilling Ground Heat Exchanger (수직 밀페형 지증 열교환기용 뒤채움재의 열전도 및 점도특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hyo-Pum;Woo, Sang-Baik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.529-532
    • /
    • 2007
  • In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than in case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

Performance Analysis of an Indoor Heat Exchanger with R-410A for GHP Application

  • Lee, Jong-Ho;Kim, Sung-Soo;Cha, Woo-Ho;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchangers with R-410A for Gas Engine Driven Heat Pump (GHP) application and to find the optimum design conditions of indoor heat exchangers by parametric analysis for the key parameters. The key parameters are number of tube row, number of tube pipe, fin pitch and transverse tube pitch. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R-410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant. This study determines the heat exchanger size, air side/refrigerant side pressure drop and overall heat transfer coefficient. Optimum design conditions for the key parameters are also determined by the parametric analysis. The results show that number of rows and pipes, fin pitch have significant effect on the heat exchanger size. It is also found that the tube length of the louver fin is $17{\sim}30%$ shorter than that of the plate fin.

A Study on Performance Characteristics of a Dehumidifier with Multi-layer Type Heat Exchangers Varying Frontal Air Velocity (다층형 열교환기를 이용한 제습기의 전면 풍속 변화에 따른 성능 특성에 관한 연구)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2323-2327
    • /
    • 2010
  • The experimental apparatus consists of dehumidifier with multi-layer type heat exchangers to remove the moisture from automatic equipments, semiconductors, and manufacturing processes under the low temperature environment, and chemical production lines which are likely to take moisture. The major components of this system are four evaporators with different fin pitch, two compressors, two condensers and an expansion valve. In this study, the performance characteristics of dehumidifier is analyzed by the variations of frontal air velocity in the first heat exchanger(evaporator). The cooling capacity of each heat exchanger is acquired by the enthalpy calculating from measuring point of temperature and relative humidity of the first heat exchanger from 1.0m/s to 4.0m/s with increasing interval 0.5m/s, and the front air velocity. As a result, it is found that cooling capacity of the first heat exchanger showed the best cooling capacity when its frontal air velocity is 2.0 m/s.

Study on physical characteristics of grouts for backfilling ground heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hang-Seok;Choi, Hyo-Pum;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.533-544
    • /
    • 2008
  • To obtain the physical properties of grout materials, that is the thermal conductivity and viscosity, which are used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts show that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. To investigate the performance of cement grouts, fifteen samples were prepared by varying the water/cement ratio and the amount of sand and bentonite added into the cement mortar. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

A Study on the Performance of Cooling/Reheating System Using Polymer Heat Exchanger (폴리머 열교환기를 사용한 냉각/재가열 시스템의 성능에 관한 연구)

  • Kim, Jin-Hyuck;Yoo, Seong-Yeon;Han, Kyu-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2154-2159
    • /
    • 2008
  • In conventional air-conditioning systems, when the circulated air from the air-conditioned space pass through the cooling coil in the air-conditioning system, the air is over-cooled to eliminate the moisture as well as to decrease the temperature. The purpose of this study is to test and evaluate performance of the cooling/reheating system which can save both cooling energy and reheating energy by exchanging heat between the cooled air and reheated air. Experimental apparatus consists of fan, ducts, polymer exchangers, cooling coil, electronic auxiliary heater and data acquisition system. Two types of polymer exchanger, plate type and dimple type, made of polypropylene for cooling/reheating system are designed. Heat transfer and dehumidification characteristics of system are tested. The results show that the energy saving is up to 40% in the range of present experimented conditions, and it decreases with increasing velocity, inlet temperature and specific humidity.

  • PDF

Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses (온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성)

  • Choi, Byungchul;Lee, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

A new thermal conductivity estimation model for weathered granite soils in Korea

  • Go, Gyu-Hyun;Lee, Seung-Rae;Kim, Young-Sang;Park, Hyun-Ku;Yoon, Seok
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.359-376
    • /
    • 2014
  • Thermal conductivity of ground has a great influence on the performance of Ground Heat Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or porosity) and the moisture content since they are decisive factors that determine the interface area between soil particles which is available for heat transfer. In this study, a large number of thermal conductivity experiments were conducted for soils of varying porosity and moisture content, and a database of thermal properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The new models were validated by comparing predictions by the models with new thermal conductivity data, which had not been used in developing the models. As for the 3D CSM, the normalized average values of training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions became somewhat unreliable in a low range of thermal conductivity values in considering the distribution pattern. As for the ANNM, the 'Logsig-Tansig' transfer function combination with nine neurons gave the most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better results than the 3D CSM.