• Title/Summary/Keyword: Heat and Mass Flux

Search Result 449, Processing Time 0.022 seconds

Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.

AN EXPERIMENTAL STUDY ON POST-CHF HEAT TRANSFER FOR LOW FLOW OF WATER IN A $3\times3$ ROD BUNDLE

  • MOON SANG-KI;CHUN SE-YOUNG;CHO SEOK;KIM SE-YUN;BAEK WON-PIL
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.457-468
    • /
    • 2005
  • An experimental study on post-CHF heat transfer has been performed with a $3\times3$ rod bundle using a vertical steam-water two-phase flow at low flow conditions. The effects of various parameters on the post-CHF heat transfer are investigated and the reasons for the parametric effects are discussed. As the heat transfer regime changes from CHF to post-CHF, the radial wall temperature distribution is changed depending on the pressure and the mass flux conditions. The superheat of the fluid increases considerably with an increase of the wall temperature (or heat flux) and with a decrease of the mass flux. This implies, indirectly, a strong thermal non-equilibrium at high wall temperature and low mass flux conditions. In order to improve the prediction accuracy of the existing post-CHF correlations, it is necessary to perform more experiments, particularly direct measurement of the vapor superheat, and to modify the correlation by considering a strong thermal non-equilibrium at low flow and low pressure conditions.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Critical Heat Flux for Low Flow in Vertical Annulus under Various Pressure Conditions

  • Chun, Se-Young;Jun, Hyung-Gil;Chung, Heung-June;Moon, Sang-Ki;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.386-391
    • /
    • 1997
  • It is important to understand correctly a CHF under low flow condition for the purpose of enhancing the reactor safety and performance in the LWRs. The CHF experiments have been carried out for an internally heated vertical annulus in RCS loop facility. The experimental conditions cover ranges of pressure from 1.82 to 12.08 MPa, mass flux from 300 to 550kg/$m^2$. s and inlet subcooling of 210kJ/kg. The CHF data decrease with increasing pressure at high value of mass flux. For mass flux of about 300kg/$m^2$. s, the CHF rue little influenced by pressure. The CHF data are correlated well by using the dimensionless heat flux and dimensionless mass flux for a fixed inlet subcooling except the data group of 12.08 MPa. It seems that the Doerffer correlation and Katto correlation overestimate the CHF for low pressure and lower value of mass flux within this experimental ranges. The Bowling correlation gives a better prediction than the other two correlations.

  • PDF

Experimental Study on R-410A Evaporation Heat Transfer Characteristics in Shell and Plate Heat Exchanger (셀 앤 플레이트 열 교환기에서의 R-410A 증발열전달에 관한 실험적 연구)

  • Kim In-Kwan;Kim Young-Soo;Park Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2005
  • The evaporation heat transfer experiments are conducted with the shell and plate heat exchanger (S&PHE) without oil in the refrigerant loop using R-410A. An experimental refrigerant loop has been established to measure the evaporation heat transfer coefficient h. of R-410A in a vertical S&PHE. Two vertical counter flow channels were formed in the S&PHE by three plates haying a corrugated trapezoid shape of a $45^{\circ}C$ chevron angle. UP flow of the boiling R-410A in one channel receives heat from the hot down flow of water in the other channel The effects of the refrigerant mass flux. average heat flux. refrigerant saturation temperature and vapor qualify are explored in detail. Similar to the case of a plate heat exchanger. even at a very low Reynolds number, the flow in the S&PHE remains turbulent. The Present data shows that the evaporation heat transfer coefficients of R-410A increased with the vapor qualify. The results indicate a rise in the refrigerant mass flux caused an increase in the h.. Raising the imposed wall heat flux is found to slightly improve h., while h, is found to be lower at a higher refrigerant saturation temperature. Based on the present data. empirical correlation of the evaporation heat transfer coefficient is proposed.

The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube (수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구)

  • Oh Hoo-Kyu;Lee Dong-Geon;Son Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.

Convective Boiling of R-410A in an Aluminum Flat Tube for Air-Conditioning Application (공조용 알루미늄 납작관 내의 R-410A 대류 비등)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3006-3013
    • /
    • 2015
  • Flat tube heat exchangers can improve the thermal performance significantly compared with round tube heat exchangers. For proper design of flat tube heat exchangers, one should know the tubeside heat transfer coefficients. In this study, convective boiling heat transfer coefficients of R-410A were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^2s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kaew-On et al. correlations reasonably predicted the present data.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger (Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube (수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF