• Title/Summary/Keyword: Heat absorption rate

Search Result 245, Processing Time 0.03 seconds

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

A Study on the COP Improvement of Absorption Chillers by Recovering Heat from the Condenser (응축기 배열회수에 의한 흡수식 냉동기의 고효율화에 관한 연구)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.738-744
    • /
    • 2006
  • In order to utilize the condensation heat of refrigerants in condenser on the absorption chiller system, the solution cooled condenser (SCC) was proposed using the weak solution of absorber as a cooling medium. The increase of COP with the increase of UA of the solution cooled condenser was approximately 0.009 in maximum with single effect one, and is about maximum 0.008 in occasion of double effect one with series flow compared to that without. In the case of heat exchanger, effectiveness is about 0.85, it's increments are 0.008 and 0.0072, respectively. And solution cooled condenser is more effective device in the single effect absorption system than double effect system for the principle of operation. On the other hand, as the solution split ratio increases when the value of UA is fixed, COP is increased and as the solution split ratio increases when the value of UA is fixed, COP is increased. If the flow rate of cooling water or the value of UA is reduced in order to increases the heat recovery of solution cooled condenser, heat recovery of solution cooled condenser is increased a little but COP is decreased as the system pressure is increased.

A Study on Heat and Mass Transfer in a Vertical Tube Absorber Using LiBr Family Solutions (LiBr계 용액을 사용한 수직관 흡수기의 열 및 물질 전달에 관한 연구)

  • Cho, H.C.;Kim, C.B.;Jeong, S.Y.;Kang, S.W.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.196-206
    • /
    • 1995
  • Experimental investigations on heat and mass transfer characteristics in a vertical tube absorber have been carried out. Three different copper tubes with a length of 1.5m have been tested using LiBr solution and LiBr-$CaCl_2$ solution. The effects of solution flow rate, cooling water temperature, solution inlet temperature and evaporation temperature have been investigated in detail. It is found that heat transfer coefficient increases gradually with the increase of solution flow rate, but decreases rapidly for the flow rates less than 0.02kg/ms. The grooved tube generally shows better heat transfer performances than the smooth tube. LiBr solution shows almost no absorption capability for the cooling water temperatures over $40^{\circ}C$. LiBr-$CaCl_2$ gives less decreasing rate in absorption capability at these temperatures and the heat transfer coefficient becomes less dependent on the types of tubes in use. Considering heat and mass transfer rates, LiBr-$CaCl_2$ solution is found to be more suitable than LiBr solution for air cooled absorber, which operates at higher temperature than water cooled absorber.

  • PDF

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Heat and mass transfer in laminar-wavy film (층류-파동 액막의 열 및 물질전달)

  • 김병주;김정헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 1998
  • Falling film absorption process is an important problem in application such as absorption chillers. The presence of waves on the film affects the absorption process significantly. In the present study the characteristics of heat and mass transfer in laminar-wavy falling film were studied numerically. The wavy flow behavior was incorporated in the energy and diffusion equation. The numerical solution indicated that the interfacial wave increased the transfer rates remarkably. Interfacial shear stress and wave frequency seemed to be the dominant factors on the film Nusselt number and Sherwood number in the wavy film. A comparison of the transfer rates of the wavy film to that of the smooth film showed that the mass transfer rate could be increased by more than 50%.

  • PDF

Experimental Investigation of Heat Transfer in Absorber with Small Diameter Tube

  • Phan Thanh Tong;Moon Choon-Geun;Kim Jae-Dol;Yoon Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.261-262
    • /
    • 2006
  • The effect of tube diameter on heat transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by experimental study to develop a high performance and compact absorber. A system Includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.7mm and 9.52mm. The experimental results show that the heat transfer coefficient, Nusselt number and heat flux increase as solution flow rate and cooling water flow rate increase. The heat transfer performance increases as tube diameter decreases. Among three different tube diameters, the smallest tube diameter 9.52mm has highest heat transfer performance. A comparison of the heat transfer coefficient obtained by the present study with those of previous experimental results showed good overall agreement.

  • PDF

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

The Effect of Fiber Type, Compressional Resilience and Moisture Transport Properties of Fiber on the Heat Transfer of Insulating Nonwovens (섬유의 종류와 압축특성 및 수분전달특성이 보온용 부직포의 열전달에 미치는 영향)

  • 김희숙;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.647-654
    • /
    • 1996
  • The purpose of this study was to analyze the effect of fiber type, compressional resilience and moisture transport properties of wool and polyester fiber on the heat transfer of insulation nonwovens. The results obtained were as follows: 1) Overall heat transfer of wool nonwoven was slightly higher than that of polyester nonwovens. Warmability of wool nonwoven was lower than that of polyester nonwovens. The radiative heat transfer was in the range of 11~18% of overall heat transfer in polyester nonwovens and 25% in wool nonwoven. 2) As wool nonwoven compressed, overall heat transfer was increased by increasing radiative heat transfer and wamability was decreased due to the poor compressional resilience. 3) Increasing rate of heat transfer by moisture absorption in wool nonwoven was lower than that of polyester nonwovens. Thickness and compressional resilience of wool nonwoven were reduced extremely by moisture absorption.

  • PDF

Comparison of Recovery Rate and Fatty Acid Composition of Dried Sea Cucumbers Apostichopus japonicus Dried by Hybrid Heat Pump Decompression and by Hot Air (2종류의 건조기로 제조한 돌기해삼(Apostichopus japonicus)의 복원율과 지방산조성 비교)

  • Jeong, U-Cheol;Jin, Feng;Anisuzzaman, Md;Choi, Byeong-Dae;Jung, Hyun-Chol;Lee, Sang-Ro;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.232-240
    • /
    • 2019
  • Approximately 80% of the world's sea cucumbers Apostichopus japonicas are processed into dried sea cucumbers. The hot air-drying method is currently used in industry, but it has many problems, such as a short drying time, severe browning, high nutrition loss, and low recovery. In this study, the moisture absorption rate, dry recovery rate, and lipid nutrient composition of sea cucumber dried by heat pump decompression and with a hybrid dryer were investigated. The moisture absorption rates for hybrid-dried sea cucumbers at 24, 48, 72, 96, and 120 h were 241.3%, 427.7%, 652.0%, 721.0%, and 742.2%, respectively. The moisture absorption rates for hot air-dried sea cucumbers were 155.8%, 240.0%, 390.3%, 655.5%, and 667.4%, respectively. Thus, moisture absorption was faster and greater with hybrid drying than with hot air drying. The dry recovery rate at 24 h was greater for hybrid-dried sea cucumber (70.7%) than for hot air-dried sea cucumber (59.8%). Saturated fatty acid contents of the hybrid- and hot air-dried sea cucumbers were 30.0% and 37.5%, respectively. Moreover, greater ${\Sigma}n-3$ polyunsaturated fatty acid content was found in hybrid-dried sea cucumber (15.8%) than in hot air-dried sea cucumber (11.7%).

A Study on the Heat Transfer in boiler through the performance test in thermal power plant (화력발전소 보일러내의 열전달에 관한 연구)

  • Kwon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2064-2069
    • /
    • 2004
  • The main reason to analyze heat transfer in boiler inside through the performance test in fossil power plant is to increase plant high efficiency and energy saving movement in the government. Tins study intends to have trend and analyze the boiler heat transfer through the performance test, so it may give us the heat distribution in boiler inside in super-critical and sub-critica1 pressure type power plant

  • PDF