• Title/Summary/Keyword: Heat Treatment Furnace

Search Result 216, Processing Time 0.038 seconds

Development of Heat-treatment Furnace with Maximum Uniform Zone using Gas-phase Condensing Heat Exchange (기상응축 열교환을 이용한 고정밀 등온 가열로 개발)

  • Hong, Hyun-Seon;Kong, Man-Seek;Kang, Hwan-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.162-168
    • /
    • 2009
  • A horizontal tube furnace with a wide uniform-temperature zone was developed using isothermal characteristics of a heat pipe. The heat pipe heating system consists of a concentric annular shaped stainless-steel container, sodium as a working fluid and a screen mesh wick structure. The performance test of the heat pipe revealed that temperature changes along seven consecutive positions of the heat pipe outer wall were less than${\pm}0.1^{\circ}C$, thereby ensuring the high isothermal property. The isothermal property of the heat pipe-adapted tube fumace was investigated and compared to a conventional non-heat pipe type tube furnace. The temperature distribution measurement showed that the uniform temperature zone, in which temperature change is less than${\pm}$1$^{\circ}$C, of the heat pipe employed tube furnace system was about three times longer compared to the conventional tube furnace system.

Thermally Grown Oxide (TGO) Growth Inhibition in a Thermal Barrier Coating (열차폐 코팅에서 열산화물층 억제에 관한 연구)

  • Kim, Hyun-Ji;Kim, Min-Tae;Park, Hai-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.70-74
    • /
    • 2012
  • In thermal barrier coating (TBC) systems, the life of the coating depends on thermally grown oxide (TGO) layer because most of the failure of TBCs occurs when TGO growth increases. In order to inhibit TGO growth, process was additionally carried out before the heat treatment of the TBC coating layer at $1200^{\circ}C$ in air. In the additional process, heat treatment in vacuum furnace of < $10^{-5}$ torr was conducted for 7 h and 14 h before the heat treatment. The area and length of TGO, as well as the crack length in the TBC were characterized using a scanning electron microscope (SEM). The TGO thickness and crack of specimens pre-heat treated in vacuum furnace were reduced by 45% compare to those heat treated in furnace. Consequently, pre-heat treatment in a vacuum furnace process lead to effective inhibition of growth of the TGO.

Effect of Heat Treatment Method on Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering

  • Kim, Deok Kyu
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.30-33
    • /
    • 2017
  • ZnO thin films which were deposited by RF magnetron sputtering system were annealed by furnace and insitu heat treatment methods. We investigated the effect of heat treatment method on physical properties of ZnO thin films. The structural and optical properties of ZnO thin films were improved by heat treatment. Through the annealing treatment of ZnO film by furnace, the good crystallinity and ultraviolet emission were obtained. These results are attributed to the improved formation of Zn-O bond in ZnO thin film annealed at by furnace. We confirm that the formation of Zn-O bond plays an important role in obtaining the excellent structural and optical properties of ZnO thin films.

A Study on Heat-Treatment Process Scheduling for Heavy Forged Products using MIP (열처리 공정의 생산스케줄 수립과 적용에 관한 연구)

  • Choi, Min-Cheol
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.143-155
    • /
    • 2012
  • The purpose of this study is to formulate and solve the scheduling problem to heat-treatment process in forging process and apply it to industries. Heat-treatment is a common process in manufacturing heavy forged products in ship engines and wind power generators. Total complete time of the schedule depends on how to group parts and assign them into heat furnace. Efficient operation of heat-treatment process increases the productivity of whole production system while scheduling the parts into heat-treatment furnace is a combinatorial problem which is known as an NP-hard problem. So the scheduling, on manufacturing site, relies on engineers' experience. To improve heat-treatment process schedule, this study formulated it into an MIP mathematical model which minimizes total complete time. Three methods were applied to example problems and the results were compared to each other. In case of small problems, optimal solutions were easily found. In case of big problems, feasible solutions were found and that feasible solutions were very close to lower bound of the solutions. ILOG OPL Studio 5.5 was used in this study.

Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware (질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어)

  • Won-Beom Lee;Won-Beom Lee;YuJin Moon;BongSoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.

A Study on the Improvement of Formability of Automobile Body Sheet (자동차용 강판의 성형성 개선에 관한 연구)

  • 김순경
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.108-114
    • /
    • 1998
  • Development on the mechanical properties of steel sheet for the automobile body panel is very important in the BAF(Batch annealing furnace) annealing process. Because of the heat treatment method in the BAF, mechanical properties was decided on the heat treatment method of the coil. So, we tested on the development of mechanical properties according to heat treatment method at the annealing furnace using the Ax(H$_2$75%, $N_2$25%) atmospheric gas and the HNx(H$_2$4%, $N_2$96%) atmospheric gas. As a result of several investigations. We confirmed the following characteristics ; mechanical properties was changed under the influence of the annealing cycle, the heat treatment method and the atmospheric gas. And, elongation in the HNx BAF was better than the Ax BAF. Finally, most important thing in the BAF is using of proper annealing cycle in order to get a good quality.

  • PDF

A Numerical Analysis of Heat Transfer in Bright Annealing Furnace of Stainless Steel Strip (Strainless steel strip 광휘어닐링로 내의 열전달 해석)

  • Ryou, H.S.;Jeong, Y.T.;Jang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2009
  • In order to predict the temperature distribution of stainless steel strip in Bright Annealing (BA) furnace, we performed the analysis of heat transfer and fluid flow using STAR-CCM+. The analysis model included unsteady fluid flow, heat transfer with radiation and moving grid. Two kinds of radiative properties, emissivity and reflectivity, were applied to the stainless steel strip, one is constant and the other is variable with time. As we call, the BA furnaces of stainless steel strip have two different types, muffle and no-muffle. The using of muffle type has been faced with some problems such as rising in material price and shortening of life cycle, etc. So the development of no-muffle type BA furnace is very important in order to save energy cost, lower environmental load and increase the productivity. The designed (or expected) temperature of stainless steel strip coming out of BA furnace was about $1065^{\circ}C$ while the environment temperature maintains around $1100^{\circ}C$. The result of our calculation was very close (or similar) to design temperature, and the application of radiative properties variable with time produced more accurate result than applying constant ones.

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF