• Title/Summary/Keyword: Heat Transport System

Search Result 230, Processing Time 0.027 seconds

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Current Transport Characteristics of 22.9 kV High Temperature Superconducting Cable System (22.9 kV 초전도케이블 시스템의 통전특성)

  • Sohn, S.H.;Lim, J.H.;Ryoo, H.S.;Yang, H.S.;Choi, H.O.;Ma, Y.H.;Kim, D.L.;Ryu, K.W.;Sung, T.H.;Hyun, O.B.;Lim, S.W.;Hwang, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.398-399
    • /
    • 2008
  • Enhanced performances of high temperature superconducting (HTS) cable attract tremendous interests of the power utility. However, the reliability issue as the power system is still in controversy. To verify the reliability of HTS cable, 22.9 kV HTS cable system with the specification of 100 m length, 50 MVA capacity, and open refrigeration cooling system was laid on Gochang power testing center of KEPCO in 2006. During the test period, the current transport characteristics, the fundamental function of power cable, have been monitored and investigated precisely. In this paper, the heat loss and AC loss measured at various current load conditions are described and discussed.

  • PDF

Numerical Simulation of Flame Propagation in a Micro Combustor (초소형 연소기내 화염전파의 수치모사)

  • Choi, Kwon-Hyoung;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.