• Title/Summary/Keyword: Heat Transfer performance

Search Result 1,897, Processing Time 0.032 seconds

Comparative Performance Analysis of Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Different Cell Inlet Preheating Methods (셀 입구 예열방법에 따른 가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능 비교 해석)

  • Yang Won Jun;Kim Jae Hwan;Kim Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.722-729
    • /
    • 2005
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range thus to reduce thermal stress inside the cell. Three different methods considered are (1) adopting a burner in front of the cell, (2) adopting a preheater (heat transfer from the main combustor) in front of the cell and (3) using recirculation of the cathode exit gas. For each configuration, analyses are carried out for two values of allowable maximum cell temperature difference. Performance characteristics of all cases are compared and design limitations are discussed. Relaxation of the cell temperature difference (larger difference) is proved to ensure higher efficiency. Recirculation of the cathode exit gas exhibits better performance than other methods and this advantage becomes more prominent as the constraint of the cell temperature difference becomes more severe (smaller temperature difference).

The Influences of LiBr Solution Recirculation in Absorber on the Absorption Chiller Performance (흡수기 용액 재순환이 흡수식 냉동기 성능에 미치는 영향)

  • Jeong, Jong-Su;Jin, Seong-Min;Park, Chan-U;Choe, Seung-Hak;Jeong, Bong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.733-741
    • /
    • 2002
  • If a part of the poor solution from the absorber outlet is recirculated to the absorber inlet, the solution temperature at the solution spray pump can be reduced, and the solution flow rate in the absorber is increased. We have performed the experiments on the influences of the absorption chiller performance according to the ratio of the recirculation, defined as the ratio of the recirculation flow rate to the total solution flow rate at the absorber outlet. As increasing the ratio of the recirculation, the absorption capacity of the solution can be deteriorated. On the other hand, due to the increasing flow rate, the heat transfer rate can be enhanced. As a result, the performance of the absorber and the cooling capacity of the absorption chiller have nothing to do with the recirculation ratio, and the lifetime of the spray pump will be maintained.

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS

  • Stan, Marius
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.39-52
    • /
    • 2009
  • Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.

Evaluation of Catalyst Assisted EGR Cooler System for EGR Cooler Fouling Reduction (EGR Cooler Fouling 저감을 위한 촉매 장착 EGR Cooler System 평가)

  • Hong, Kwang-Seok;Park, Jung-Soo;Lee, Kyo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • Exhaust gas recirculation is the well-known and widely used NOx reduction technology for diesel engines. More effective EGR cooler has been developed and applied to diesel engines to meet the reinforced emission regulation. However, the contaminated EGR cooler by diesel exhaust gas reduces the performance of the engine and NOx reduction rate. The buildup of deposits in EGR coolers cause significant degradation in heat transfer performance, often on the order of 20~30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operation conditions. In this study, as a solution for this problem, DOC assisted EGR cooler is designed and then investigated to reduce fouling and its impact on cooler performance. A single channel EGR cooler fouling test apparatus and soot particle generator were developed to represent the real EGR cooler and exhaust gas of diesel engine. EGR cooler effectiveness of the case with catalyst of pt 30g/ft3 decreased just up to 5%. This value was 45% less compared to the case without catalyst which decreased up to 9% after 10hours experiments.

Optimum Collector Area and Economic Evaluation for the Greenhouse Heating (태양열 온실 난방에 대한 최척 집열 면적과 경제성 평가)

  • Pak, Ee-Tong;Kim, Kyu-In
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1982
  • Aim of this study was to obtain the heating performance and the economic evaluation on solar heating system for greenhouse which area of floor was $90m^2$. For heating performance effective solar energy for the greenhouse was compared with overall heating loads including coefficient of heat transfer and conduction. And the economic evaluation solar heating system was evaluated by comparison its initial investiment costing with oil saving cost. Initial investiment costing included collector cost, storage cost, piping cost, control system cost and miscellaneous costs which included pumps, motors etc. The contents of this study included the survey of climate conditions for solar heating, long-term collector performance and optimum collector area of solar heating system in existing greenhouse. The results are follows: 1. Average horizontal radiation during winter was $2,434Kcal/m^2$ day which was the highest value in this country, so the climate conditions of Suwon was suitable for solar heating. 2. Resulting calculation of the optimum collector area was $30m^2$ and the solar energy accounted for 30% of the overall heating load. 3. The capacity of storage tank required 60 liter per unit area ($m^2$) of solar collector.

  • PDF

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

A Study on Ventilation and Heat Transfer Coefficient of Passive Ventilation Skin (패시브환기외피의 통기성능 및 열관류율에 대한 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.679-684
    • /
    • 2012
  • This paper aims to evaluate performances of ventilation and insulation of 6types PVS(Passive ventilation skin) by numerical simulation. The results are as follows. 1) The result of Performance of ventilation by pressure difference, it was shown that the amount of ventilation changed bigger under 1Pa and amount of ventilation increased according to increase opening area (${\alpha}A$). Although same opening area of PVS, it can predict that pressure differences cause ventilation differences. 2) In case of same opening area of PVS, however, it was changed the amount of ventilation each types of PVS that is distinguished opening area by flow coefficient. 3) Dynamic U-value that represents performance of insulation PVS was similar change upper ${\alpha}A40\;cm^2/m^2$, great change in casse of 0.1 Pa pressure difference. In case of ${\alpha}A10\;cm^2/m^2$, it was changed bigger under 0.3 Pa pressure difference, ${\alpha}A20\;cm^2/m^2$ of PVS was changed under 0.2 Pa pressure difference.

Analysis of Elements Influencing on Performance of Interior Ballistics (강내탄도의 성능 영향 요소 분석)

  • Sung, Hyung-Gun;Yoo, Seung-Young;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-24
    • /
    • 2013
  • The analysis of performance and internal flow according to various numerical models for interior ballistics has been conducted. The initial flow has been mainly affected by the drag model of propellants and their drag degradation reduces oscillations of differential pressure between the breech and the shot base. Models of Nusselt number haven't influenced the major performance of interior ballistics. The negative differential pressure isn't generated in the case without the heat transfer of propellants.

APPLICATION OF PERFORMANCED BASED DESIGN IN FIRE PROTECTION ENGINEERING

  • Cha, David S.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.423-438
    • /
    • 1997
  • Today's building and fire prevention codes are mostly prescriptive. Prescriptive codes are based on major fires in earlier years that created a need for specific building provision. These codes provide a minimum level of safety. As the general and engineering uses of computers have increased over the years, so has use of computers in the fire protection engineering. This has allowed fire protection engineers to develop alternative approaches to solve today's fire protection problems or to evaluate the performance of a specific fire safety goal. A performance based approach to building and fire codes involves the following: 1) identifying specific goals, such as, safely getting out of the building in 10 minutes, 2) obtain conceptual approval from authorities, 3) define performance level, 4) develop design solutions and identify tools such as, fire tests, models, or methods, to demonstrate that a design will meet the fire protection objective 5) test solutions, 6) present test method and results to the authorities. Some people in the fire protection community consider this to be nothing more than an intellectual exercise, while the others view it as a way to reduce expenses on large project$^4$ Others in fire protection community view this as a way to refine the design process to design fire protection systems to better protect the fire hazards. This paper will focus on application of these tools, specifically computer fire models, to actual cases such as: design of a smoke control system heat transfer analysis and egress of building occupants during potential fires.

  • PDF

The Heat Pump Application to the Food Concentration (열 펌프의 식품 농축에의 이용 연구)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Kang, Tong-Sam;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.486-491
    • /
    • 1987
  • The performance and applicability to food concentration of heat pump were investigated. During heating the water of spa from $43^{\circ}C$ to $51^{\circ}C$, COP's of heat pump (R-12, 150 HP) were 4.03 at heating part and 3.5 at cooling part. And, the efficiency of compressor (${\alpha}$) was 0.477 While the city water was heated to $39^{\circ}C$ by heat pump (R-22, 10 HP), its COP's were 3.0 at heating part and 1.87 at cooling part. During concentrations sucrose solution by centrifugal evaporator (ALFA-LAVAL CO, CTIB) with heat pump, heat capacity for condensating water vapor was required greater 15% than the latent heat for concentrating and then the overall heat transfer coefficient was $1196\;Kcal/m^{2}.\;h.\;^{\circ}C$. When low temperature concentration ($30-35^{\circ}C$, 28-40 Torr) of garlic extract was carried out by the water of $60^{\circ}C$ and $15^{\circ}C$ adjusted by heat pump, the ratio of heat capacity for concentrating vs. that for condensating of water vapor was 0.961.

  • PDF