• Title/Summary/Keyword: Heat Transfer Tube

Search Result 1,311, Processing Time 0.029 seconds

An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석)

  • Lee, Bang Weon;Park, Kyong Soon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

Control of Nanospacing in TiO2 Nanowire Array Using Electron Beam Lithography

  • Yun, Young-Shik;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.1-430.1
    • /
    • 2014
  • According to advanced nanotechnology in the field of biomedical engineering, many studies of the interaction between topography of surfaces and cellular responses have been focused on nanostructure. In order to investigate this interaction, it is essential to make well-controlled nanostructures. Electron beam lithography (EBL) have been considered the most typical processes to fabricate and control nano-scale patterns. In this work, $TiO_2$ nanowire array was fabricated with hybrid process (top-down and bottom-up processes). Nanodot arrays were patterned on the substrate by EBL process (top-down). In order to control the spacing between nanodots, we optimized the EBL process using Poly(methyl methacrylate) (PMMA) as an electron beam resist. Metal lift-off was used to transfer the spacing-controlled nanodots as a seed pattern of $TiO_2$ nanowire array. Au or Sn nanodots which play an important role for catalyst using Vapor-Liquid-Solid (VLS) method were patterned on the substrate through the lift-off process. Then, the sample was placed in the tube furnace and heated at the synthesis temperature. After heat treatment, $TiO_2$ nanowire array was fabricated from the nanodots through VLS method (bottom-up). These results of spacing-controlled nanowire arrays will be used to study the interaction between nanostructures and cellular responses in our next steps.

  • PDF

Effects of Fin Conduction and Superheat Unbalance on the Performance of an Evaporator (핀의 전도 열전달 및 과열도 변화에 따른 증발기 성능 특성에 관한 연구)

  • Choi Jong Min;Kim Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2005
  • An experimental investigation was executed to determine the capacity degradation due to fin conduction and non-uniform refrigerant distribution in a multi-path evaporator with cross-counter flow. The finned-tube evaporator, which had a three-path and three-depth-row, was tested by controlling inlet quality, exit pressure, and exit superheat for each refrigerant path. The capacity reduction due to superheat unbalance between each path was as much as $25\%$ for non-cutting evaporator, even when the overall evaporator superheat was kept at a target value of $5.6^{\circ}C$. It indicates that the internal heat transfer within the evaporator assembly causes the partial capacity drop. The capacity of cutting-evaporator with respect to non-cutting evaporator was enhanced according to the increment of air flow rate when superheat or superheat unbalance increased.

Effects of Conductivity and Thickness on Natural Convection Heat Transfer From a Horizontal Circular Tube (수평 원통관의 열전도율과 두께가 자연대류 열전달에 미치는 영향)

  • 정영식;강병희;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.265-279
    • /
    • 1986
  • Ra=$10^{6}$, Pr=5에서 관열전도율과 두께가 변화할 때의 단일수평관에서의 자연대류 열전달에 관하여 유한차분법을 이용하여 해석적으로 연구하였다. .delta.$_{w}$ /d$_{o}$ =0.1에서 관열전도율이 높을수록 높은 온도와 높은 국소 누셀트 수를 나타 내며, .theta.=20。에서의 원주방향속도는 (r-r$_{o}$ )=0.08에서 최대가 되며 반경방향속 도는 (r-r$_{o}$ )=0.14에서 최대가 된다. 관외벽온도는 관 두께가 증가함에 따라 거의 유사하게 감소한다. $K_{w}$ /K$_{f}$ =75에서 각도변위가 증가함게 따라 국소 누셀트수는 현저히 증가하나 관 두께가 증가함에 따라서는 감소한다. .delta.$_{w}$ / d$_{o}$ =0.1에서 평균 누셀트수와 평균 온도는 무차원 열전도율이 증가함에 따라 $K_{w}$ /K$_{f}$ >15에서는 평균 누셀트 수는 서서히 증가하고 평균 온도는 거의 같 은 값을 가지며 지수함수로 표시할 수 있었다. $K_{w}$ /K$_{f}$ =75,50에서 평균 누 셀트수와 온도는 무차원 관 두께가 증가함에 따라 거의 직선적으로 감소되며 선형 함 수로 나타낼 수 있었다.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.153-162
    • /
    • 1980
  • The investigation of the fuel cladding temperature behavior and heat transfer mechanism during the reflooding phase of a LOCA plays an important role in performance evaluation of ECCS and safety analysis of water reactors. Reflooding experiments were performed with horizontal and vertical flow channels to investigate the effect of coolant flow channel orientation on rewetting process. Emphasis was mainly placed on the CANDU reactor which has horizontal pressure tubes in core, and the results were compared with those of vertical channel. Also to investigate the rewetting process visually, the experiments by using a rod in annulus and a quartz tube heated outside were performed. It can be concluded that the rewetting velocity in horizontal flow channel is clearly affected by flow stratification, however, the average rewetting velocity is similar to those in vertical flow channel for same conditions.

  • PDF

A Study on Non-contact Surface Temperature Field Measurement of a Body Immerged in Water Using Thermographic Phosphor Thermometry (열감지인광온도계를 이용한 물에 잠긴 물체 표면 온도장의 비접촉식 측정에 관한 연구)

  • Park, Yoonseong;Cai, Tao;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • Thermographic phosphor (TP) thermometry is a noncontact optical measurement method and has been applied in many fields such as combustion and heat transfer. However, due to the limitation of bonding technology and measurement method, most TP thermometry studies were conducted only on the air environment with water-soluble binders. In this paper, a temperature measurement technology in water using TP is proposed by coatings of manganese activated magnesium fluorogermanate (Mg4FGeO6:Mn4+, MFG) with Polydimethylsiloxane (PDMS). Four MFG-PDMS coatings with different thicknesses were prepared. The lifetime of MFG was not affected by the thickness of the coating as a result of the experiment and analysis of phosphor intensity using a photomultiplier tube. To measure the surface temperature field of an immerged body in water, a cylinder-type cartridge heater was coated with MFG doped PDMS. Transient surface temperature field was successfully measured even the initial temperature is higher than the boiling point of water.

Experimental Study of Steam Reforming Assisted by Catalytic Combustion in Concentric Annular Reactor (촉매연소를 이용한 동심 원관형 반응기 내의 수증기 개질 반응에 관한 실험적 연구)

  • Ghang, Tae-Gyu;Yu, Sang-Seok;Kim, Yong-Mo;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • In this paper, the heat-transfer characteristics of steam reforming in an annular reactor are presented. Heat is supplied by the catalytic combustion of syn-gas. The thermal behaviors of exothermic and endothermic reactions in a directly coupled concentric-tube packed-bed reactor were investigated experimentally. The gas mixture supplied for catalytic combustion consisted of the off-gas emitted from MCFC anode. Methane in steam at a suitable S/C (steam-to-carbon) ratio was used in the reforming reactions. On the basis of the experimental results, a simple simulation was performed to predict the temperature profile required in the reforming side of the reactor to achieve optimum hydrogen yield. The results of this study may be utilized as reference data in future studies for further development of coupled reactors.

A Study on the Synthesis of Titanium Carbonitride by SHS(Self-propagating High-temperature Synthesis) Method (자체반응열 고온합성법을 이용한 Titanium Carbonitride의 합성에 관한 연구)

  • Ha, Ho;Hwang, Gyu-Min;Lee, Hee-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.637-642
    • /
    • 1994
  • Using SHS(Self-propagating High-temperature Synthesis) method, the optimum synthetic condition of titanium carbonitride was established by controlling the parameters such as relative density of mixture (Ti+C), nitrogen pressure, additive amounts of titanium hydride(TiH1.924) and protecting heat loss. Under 1 atm nitrogen pressure, nitridation ratio with changing relative density of the sample compacts has a maximum (87.2%) at about 55%, and in the case of enveloping the pellet with a quartz tube, the highest nitridation ratio of 90% was obtained at about 68%. At relative density of 55%, nitridation ratio with the nitrogen pressure has a miximum (87.3%) at 7 atm. As the amounts of additive titanium hydride increased, nitridation ratio decreased at below 7 atm nitrogen pressure and, increased at above this pressure until percent of addition percent reached 15 wt% and decreased abruptly upon futher increases in titanium hydride. In the synthesis of TiCxNy by combustion reaction, heat transfer from combustion zone to preheating zone and nitrogen gas penetration into the compact were found to be important factors affecting the TiCxNy formation. It was difficult to obtain high nitridation ratio when the conbustion temperature was either too high or too low, and it seems that the retention of high temperature after a combustion wave sweeped through the reactant mixture pellet is critical to obtain a satisfactory nitridation ratio.

  • PDF

Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models (난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구)

  • Min, June Kee;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2014
  • Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.