• Title/Summary/Keyword: Heat Transfer Limit

Search Result 104, Processing Time 0.019 seconds

Thermal Characteristics Investigation of 6U CubeSat's Deployable Solar Panel Employing Thermal Gap Pad (열전도 패드가 적용된 6U 큐브위성용 태양전지판의 열적 특성 분석)

  • Kim, Hye-In;Kim, Hong-Rae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.51-59
    • /
    • 2020
  • In the case of cubesat, a PCB-based deployable solar panel advantageous in terms of weight reduction and electrical circuit design is widely used considering the limited weight and volume of satellites. However, because of the low thermal conductivity of PCB, there is a limit relative to heat dissipation. In this paper, the thermal gap pad is applied to the contact between the PCB-based solar panel and the aluminum stiffener mounted on the outside of the panel. Thus, the heat transfer from the solar cell to the rear side of the panel is facilitated. It maximizes the heat dissipation performance while maintaining the merits of PCB panel, and thus, it is possible to improve the power generation efficiency from reducing the temperature of the solar cell. The effectiveness of the thermal design of the 6U cubesat's deployable solar panel using the thermal gap pad has been verified through on-orbit thermal analysis based on the results, compared with the conventional PCB-based solar panel.

Review of Formability and Forming Property for Stainless Steel (스테인레스 강판의 가공특성과 성형성에 관한 고찰)

  • Kim, Y.S.;Park, J.G.;Ahn, D.C.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Effect of Parameters in Evaporative Removal Process by Absorption of a CW Laser (연속 레이저 흡수에 의한 증발제거 과정의 관련 인자 영향 고찰)

  • 김진윤;송태호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 1995
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd: YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as BrJ, and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased. To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model (Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구)

  • Jang Kyoung-Bok;Cho Si-Hoon;Jang Tae-Won
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

Analysis of Thermal Stress and Fatigue Life in the Steel Shell of a Cupola Furnace (큐폴라 용해로 철피의 열응력 및 피로수명 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.47-54
    • /
    • 2020
  • Themo-mechanical analysis was carried out using the finite element method for the steel shell of a cupola furnace. When the outer surface of the shell was cooled with water to within the temperature range of 35-80 ℃ during operation of the cupola, the inner surface of the shell was expected to exhibit a temperature of 65-248 ℃ based on heat transfer analysis. The shell was also expected to have an equivalent stress range of 100-280 MPa in the outer surface over the temperature range examined. Upon cooling the shell to obtain an outer surface temperature <80 ℃, the maximum equivalent stress of the shell did not exceed the yield strength. Although the temperature of the outer surface varied between 35 and 80 ℃ periodically due to the cooling control problem, the fatigue stress at the outer surface of the shell was calculated to be within the fatigue strength. During a non-operational period to examine the system between furnace operations, the thermal stress presented in the shell was sufficiently low to reach the desired yield strength and fatigue limit.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.