• Title/Summary/Keyword: Heat Transfer Correlation

Search Result 478, Processing Time 0.026 seconds

Study on the thermal and flow characteristics around a sphere submerged in the fluid (유체속에 잠긴 구주위에서의 열 및 유동특성에 관한 연구)

  • ;;Lim, Kyung Bin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.238-243
    • /
    • 1981
  • An empirical formula for the mass flow rate in natural convection flume above a spherical heated body which is submerged in a finite fluid contained in a tank was determined. The ratio of depth of submergence to diameter of the sphere for which the sphere sensed as infinite medium was found to be bigger than 7. A dimensionless heat transfer correlation for the natural convection from a sphere was determined for Gr.Prq etween 7x10$\^$7/ and 2x10$\^$8/ also.

RELAP5 Analysis of a Condensation Experiment in an Inverted U-tube

  • Park, Chul-Jin;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.383-388
    • /
    • 1995
  • Two-phase transient phenomena in the noncondensable gas-filled closed loop was investigated numerically using the RELAP5/MOD3 version 3.1 computer code. The condensation heat transfer correlation for noncondensable gases was studied in detail. Two modes of the reflux condensation which can be characterized by countercurrent flow of steam and its condensed water and the oscillatory between reflux condensation and natural circulation were predicted well. However, the natural circulation mode which the condensed water carried over the U-bend concurrently with steam was failed to predict.

  • PDF

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts

  • Cho, Won-Il;Park, Eun-Ji;Cheon, Hee Soon;Chung, Myong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of $F_0$ among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and $F_0$ were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% ($R^2=0.975$). The changes in nodal temperature and $F_0$ caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.

The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger (자체 예열식 촉매 열 교환식 연소특성)

  • 유상필;송광섭;서용석;조성준;류인수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2001.05a
    • /
    • pp.45-52
    • /
    • 2001
  • The study on the heat exchanger with catalytic combustion was performed as the development of the catalytic combustion applications. This study tried to achieve the both goals-the mixture preheating and the heat transfer to working fluid simultaneously by using the steady state catalytic combustion. The combustion characteristics were investigated with the quantitative, qualitative experimental variants of the mixture. In addition, the temperature distribution of catalytic layer was investigated to investigate the correlation between the combustion characteristics and the heat balance of the catalytic layer. As a result, the steady state reaction within the appropriate range of temperature is the critical factor in catalytic applications. To get this, the sensible control of both the mixture flow and the heat balance of catalytic layer were required.

  • PDF

A study on the boiling heat flux on high temperature surface by impinging water jet (衝突水噴流에 의한 高溫面의 沸騰熱流束에 관한 硏究)

  • Lee, Ki-Woo;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-94
    • /
    • 1988
  • A series of experiments was performed in this study to investigate the boiling heat flux between an impinging water jet and a hot surface. Test variables were surface roughness, jet velocity, saturation temperature excess of surface, nozzle diameter and the gap distance between nozzle plate and the hot surface. In order to make the impinged cooling water a forced flow streaming a long the hot surface immediately after the initial impingement, the flat nozzle tip was extended to a circular flat plate having the same diameter as the hot surface. Utilizing the dimensionless parameter study on continuity, momentum and energy equations, 5 groups of variables involved in the nucleate boiling heat transfer were derived so that it is possible to estimate the increased heat flux by impinging water jet in a similar experimental work. For the case of saturated water being impinging onto a high temperature surface, an applicable correlation among dimensionless parameters describing the heat flux was found to be as follow.

Characteristics of Heat Transmission Variation by Air Space Thickness and Injected Air Temperature in Air-Inflated Double Layers Film (공기막 이중필름의 공기막 두께와 주입공기 온도에 따른 관류전열량 변화 특성)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.121-125
    • /
    • 2013
  • This study was carried out to provide a valuable reference which could reduce heating loss of air-inflated double PO film. Therefore, this study was aimed to choose the best air space thickness and injected air temperature. The characteristics of heat transmission variation at experimental materials were measured and analysed in the laboratory. The experiment was conducted of two layers of PO film, each 0.15 mm tick, sandwiching 110, 175, 225 mm of inflated air with 1 m sides. Environmental control lab was constantly controlled with $-10^{\circ}C$ and experiment chamber was constantly changed with 0, 5, 10, $15^{\circ}C$. The analysis of heat transfer showed that heat transmission does not have a direct correlation with Air Space thickness and injected air temperature. But when inside and outside temperature difference of chamber was great, supply of outside air to Air Space had an advantage at reduction of heating load. It was required to examine accurate analysis at a real greenhouse.

A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition (중대사고시 노심용융물의 Rayleigh-Benard 자연대류 예비 실험)

  • Moon, Je-Young;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.254-264
    • /
    • 2012
  • Rayleigh-Benard natural convection experiments were carried out as the preliminary experiment to simulate the natural convection of the core melt at the severe accident conditions. This work focused on the influences of plate separation distance(s), the existence of the side walls and crust geometries of upper and lower plates. Based upon the analogy concept, a cupric acid-copper sulfate electroplating system($H_2SO_4-CuSO_4$) was employed as the mass transfer system and measurements were made for $Ra_s$ ranging from $1.06{\times}10^7$ to $2.91{\times}10^{10}$. The test results measured for a single horizontal plate were in good agreement with the correlation reported by McAdams and those for two horizontal plates showed the similar trend to the existing Rayleigh-Benard heat transfer correlations developed by Dropkin and Somerscales, Globe and Dropkin. The measured heat transfer rate decreased with the increasing separation distance between the two plates and became similar to those for a single horizontal plate. Fin arrays mounted on both upper and lower plates enhanced the heat transfer rates. For all cases, the heat transfer rates measured for open side walls are higher than those for closed ones.

A Study on Pressure Dependence of Minimum Ignition Energy (최소발화에너지의 압력의존성에 관한 연구)

  • Ha Dong-Myeong;Lee Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • To investigate the pressure dependence of minimum ignition energy(MIE), thermal ignition theory, concept of heat transfer, ideal gas law, and kinetic theory are discussed. Correlation equations for the MIE and pressure were obtained through a regression analysis of reported data. In the proposed methodology the predicted MIE with pressure variations agree with reported data within a few average absolute deviations(A.A.D.). Therefore the proposed methodology has provided to be the general method for predicting the MIE of hydrocarbons.

  • PDF