• Title/Summary/Keyword: Heat Trading

Search Result 13, Processing Time 0.021 seconds

Optimal Operation Model of Heat Trade based District Heating and Cooling System Considering Start-up Characteristic of Combined Cycle Generation (가스터빈 복합발전의 기동특성을 고려한 열거래 기반 지역 냉난방 시스템의 최적 운영 모델)

  • Kim, Jong-Woo;Lee, Ji-Hye;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1610-1616
    • /
    • 2013
  • Recently, district heating and cooling (DHC) systems based on combined cycle generation (CCG) providers are increasing in Korea. Since characteristics of combined heat and power (CHP) generators and heat demands of providers, heat trading between DHC providers based on the economic viewpoint is required; the heat trading has been doing. In this paper, a mathematical model for optimal operation based on heat trading between DHC providers is proposed. Especially, start-up characteristic of CCG is included. The operation model is established by mixed integer linear programming (MILP).

Heat-Electric Power Ratio Optimization To Maximize Profit of a Cogeneration Power Plant (열병합 발전기 수익 극대화를 위한 열전비 최적화)

  • Kim, Gun-Hoe;Lee, Jae-Heon;Moon, Seung-Jae;Chang, Taek-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.381-384
    • /
    • 2008
  • This paper presents an operational technique to maximize profit of a cogeneration power plant. To minimize errors in a loss and gain analysis of a cogeneration power plant, the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry are taken into consideration. The objective is to optimize the heat-electric power ratio to maximize profit of a cogeneration power plant. Furthermore, the constrained bidding technique to optimize heat-electric power ratiocan be obtained. Profits from of a cogeneration power plant are composed of three categories, such as the energy sale profit in the cost-based-pool electric power trade market, the heat sale profit, and the supplementary fund profit for electric power industry. Profits of a cogeneration power plant are varied enormously by the operation modes. The profits are mainly determined by the amount of constrained heat generation in each trading time. And the three profit categories arecoupled tightly via the heat-electric power ratio. The result of this case study can be used as a reference to a cogeneration power plant under the power trading system considered in this case.

  • PDF

Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators (집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발)

  • Kim, Yongha;Kim, Seunghee;Hyeon, Seungyeon
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Since the heat is not as fast as the electric power and the loss is relatively large compared to the electric power, it is not realistic to operate the thermal transfer system with on operation center like electric power trading. In the case of the Korea District Heating Corporation, where all the thermal transfer are currently being made, only two or four adjacent heat-generating power plants are being the heat trading. Therefore, In this paper, we concluded that it is appropriate to divide the integrated operation center for heat trading into several regions, to operate the hub integrated operation power plant in each region to reflect the characteristics of the heat medium and proposed the thermal transfer mechanism among integrated energy operators. Then, we have developed an algorithm that can optimize the heat transaction for the proposed mechanism and applied it to the actual operators to verify the usefulness of the proposed algorithm.

An Empirical Study on the Operation of Cogeneration Generators for Heat Trading in Industrial Complexes

  • Kim, Jaehyun;Kim, Taehyoung;Park, Youngsu;Ham, Kyung Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.29-39
    • /
    • 2019
  • In this study, we introduce a model that satisfies energy efficiency and economical efficiency by introducing and demonstrating cogeneration generators in industrial complexes using various actual data collected at the site. The proposed model is composed of three scenarios, ie, full - time operation, scenario operated according to demand, and a fusion type. In this study, the power generation profit and surplus thermal energy are measured according to the operation of the generator, and the thermal energy is traded according to the demand of the customer to calculate the profit and loss including the heat and evaluate the economic efficiency. As a result of the study, it is relatively profitable to reduce the generation of the generator under the condition that the electricity rate is low and the gas rate is high, while the basic charge is not increased. On the contrary, if the electricity rate is high and the gas rate is low, The more you start up, the more profit you can see. These results show that even a cogeneration power plant with a low economic efficiency due to a low "spark spread" has sufficient economic value if it can sell more than a certain amount of heat energy from a nearby customer and adjust the applied power through peak management.

A Study on Optimal Operation of Microgrid Considering the Probabilistic Characteristics of Renewable Energy Generation and Emissions Trading Scheme (신재생에너지발전의 확률적인 특성과 탄소배출권을 고려한 마이크로그리드 최적 운용)

  • Kim, Ji-Hoon;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • A microgrid can play a significant role for enlargement of renewable energy sources and emission reduction because it is a network of small, distributed electrical power generators operated as a collective unit. In this paper, an application of optimization method to economical operation of a microgrid is studied. The microgrid to be studied here is composed of distributed generation system(DGS), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems, wind power systems. Both of thermal loads and electrical loads are included here as loads. Also the emissions trading scheme to be applied in near future, the cost of unit start-up and the operational characteristics of battery systems are considered as well as the probabilistic characteristics of the renewable energy generation and load. A mathematical equation for optimal operation of this system is modeled based on the mixed integer programming. It is shown that this optimization methodology can be effectively used for economical operation of a microgrid by the case studies.

A Study on Carbon Reduction Measures in Korean Aquaculture Using the Carbon Offset Market - Focused on the External Projects of the Emission Trading System (ETS) - (양식업부문의 시장유인적 탄소저감 방안에 관한 연구 - 배출권거래제 외부사업을 중심으로 -)

  • Pil-Gyu Jung;Yong-Min Shin
    • The Journal of Fisheries Business Administration
    • /
    • v.55 no.3
    • /
    • pp.27-42
    • /
    • 2024
  • As global climate change impacts become more apparent, countries are implementing various policies to achieve carbon neutrality that can be categorized into direct regulations and market-based indirect regulations. The latter, utilizing economic incentives, is considered more efficient in transforming corporate behavior and promoting voluntary efforts for carbon reduction. In alignment with international trends, South Korea has introduced the Emission Trading System (ETS) in 2015. Despite this, the domestic carbon market remains underdeveloped, with low ETS participation, particularly in the aquaculture sector. In order to activate external projects under the ETS, this study proposes short-term strategies including linking ETS with popular eco-friendly energy distribution projects, developing standardized monitoring techniques, and integrating carbon reduction initiatives with other support mechanisms such as direct payment programs. Long-term strategies focus on developing new methodologies for external projects, promoting the use of renewable energy, and enhancing technologies to reduce energy consumption in aquaculture operations. By implementing these strategies, the study aims to enhance the participation of the aquaculture sector in carbon reduction efforts, contributing to the overall goal of carbon neutrality.

Analysis of Operational Economic Efficiency in a Cogeneration Power Plant (열병합 발전소의 운전경제성 분석에 관한 연구)

  • Kim, Gun-Hoe;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.5 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This study presents an operational technique to maximize the profit of a cogeneration power plant under cost-based pool power market. In benefit side energy sale profit, heat sale profit, and supplementary fund profit for electric power industry are included and the changeable cost was considered in cost side. The profit of a cogeneration power plant is varied enormously by the operation conditions, and constraint conditions. The result of this case study can be used as a reference to a cogeneration power plant under the same power trading system.

  • PDF

Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis (회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구)

  • Yoon, Jungmin;Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.3-12
    • /
    • 2014
  • This study aims at providing an economic assessment for incineration plants which recover heat during its incineration process. In this study, Life Cycle Cost(LCC) of incineration plants is performed based on each regression analysis formula for construction cost, operation cost, and heat generation in order to compare economic feasibility. The result shows that the incineration plant recovering waste heat while processing 80 tons of waste per day increases both initial investment and operation cost but this type of an incineration plant has economical predominance from the recovered waste heat over the one that does not recover heat when being operated for more than eleven years if the retrieved heat replaces the use of LNG. And its payback time reaches more than 19 years in case of selling heat and performing emission trading.

Economic Analysis of GHG Emission Reduction Methodology in Pulp, Paper and Wood Industry Approved by Korea Voluntary Emission Reduction Program (온실가스배출 감축사업(KVER) 제지목재 분야 인증 감축방법의 경제성 분석)

  • Kim, Young Min;Song, Myung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The Energy and Green House Gas target management system was launched by the Korean Government in 2010. The Korea Emission Trading System will start in 2015. Therefore, simultaneous pursuit of energy saving and greenhouse emission reduction through energy use rationalization is an important obligation of Korean engineers, who import about 97% of domestic energy consumption. Economic analysis of the GHG emission reduction methodologies registered and approved by Korea Voluntary Emission Reduction (KVER) program was conducted. The results for waste heat recovery employed in an energy intensive pulp, paper and wood industry were reported. The emission reduction intensities were 9.7 kg $CO_2$/ton_pulp production. Net Present Value analysis showed that the GHG emission reduction was economically beneficial with an internal rate return of 60%. The results of exergy analysis indicated that the second law efficiencies of waste heat recovery system employed in KVER program were 77.3% and 53.6%. NPV decreased as the exergy decreased.

An Analysis of Livestock Manure Management Cost and Economical Efficiency by applying CDM (축산분뇨 처리비용 및 CDM 사업 적용시의 경제성 분석)

  • Yoon, Sung-Yee;Lee, Jung-Min;Hwang, Jae-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.4
    • /
    • pp.377-398
    • /
    • 2007
  • The objectives of this thesis were to search for effective methods of the livestock manure management through analysis of the livestock manure management cost and prepare for cuts in greenhouse gases emission by applying CDM in the fields of livestock in 2013. In the situation where most farmhouses are disposing the pig manure by ocean disposal, it is urgent to make an alternative plan since ocean disposal will be prohibited from 2012. Biogasplant is being highlighted from the point that can produce heat and electricity by using methane generated when the manure is disposed, and that can produce barnyard manure and liquid manure. As biogasplant generates energy using methane, it will contribute to decreasing global warming with the effect of greenhouse gases reduction, and trading emission reductions through CDM will result in creating revenue.

  • PDF