• Title/Summary/Keyword: Heat Shock protein

Search Result 605, Processing Time 0.036 seconds

벼로부터 chloroplast small heat shock protein cDNA의 cloning 및 characterization

  • 이병현;원성혜;이효신;김기용;김미혜;정동민;조진기
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 1999.06a
    • /
    • pp.71.2-72
    • /
    • 1999
  • 고등식물에 있어서 엽록체에 존재하는 저 분자량 heat shock protein (smHSP)은 식물의 내열성 획득에 있어서 필수유전자임이 mutant를 이용한 유전학적인 연구에 의해 보고된 바 있다. 고온내성이 강한 작물인 벼로부터 엽록체 smHSP cDNA를 분리하고자 벼의 잎에서 분리한 mRNA로 작성한 cDNA library로부터 screening하였다. 선발된 smHSP cDNA는 1,026 bp의 염기로 구성되어 있었으며, 239개의 아미노산으로 구성되는 예상분자량 26.6 kDa의 단백질을 code하고 있었다. 또한 다른 식물로부터(중략)

  • PDF

Heat Shock RNA 1, Known as a Eukaryotic Temperature-Sensing Noncoding RNA, Is of Bacterial Origin

  • Choi, Dongjin;Oh, Hye Ji;Goh, Chul Jun;Lee, Kangseok;Hahn, Yoonsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1234-1240
    • /
    • 2015
  • Heat shock RNA 1 (HSR1) is described as a "eukaryotic heat-sensing noncoding RNA" that regulates heat shock response in human and other eukaryotic cells. Highly conserved HSR1 sequences have been identified from humans, hamsters, Drosophila, Caenorhabditis elegans, and Arabidopsis. In a previous study, however, it was suggested that HSR1 had originated from a bacterial genome. HSR1 showed no detectible nucleotide sequence similarity to any eukaryotic sequences but harbored a protein coding region that showed amino-acid sequence similarity to bacterial voltage-gated chloride channel proteins. The bacterial origin of HSR1 was not convincible because the nucleotide sequence similarity was marginal. In this study, we have found that a genomic contig sequence of Comamonas testosteroni strain JL14 contained a sequence virtually identical to that of HSR1, decisively confirming the bacterial origin of HSR1. Thus, HSR1 is an exogenous RNA, which can ectopically trigger heat shock response in eukaryotes. Therefore, it is no longer appropriate to cite HSR1 as a "eukaryotic functional noncoding RNA."

Induction of Heat Shock Proteins and Antioxidant Enzymes in 2,3,7,8-TCDD-Induced Hepatotoxicity in Rats

  • Kim, Hyun-Sook;Park, So-Young;Yoo, Ki-Yeol;Lee, Seung Kwan;Jung, Woon-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an environmental toxicant with a polyhalogenated aromatic hydrocarbon structure and is one of the most toxic man-made chemicals. Exposure to 2,3,7,8-TCDD induces reproductive toxicity, immunotoxicity, and hepatotoxicity. In this study, we evaluated how 2,3,7,8-TCDD-induced hepatotoxicity affect the expression of heat shock proteins and antioxidant enzymes using the real-time polymerase chain reaction (PCR) in rat. 2,3,7,8-TCDD increased heat shock protein (Hsp27, ${\alpha}$-B-crystallin, Mortalin, Hsp105, and Hsp90s) and antioxidant enzymes (SOD-3, GST and catalase) expression after a 1 day exposure in livers of rats, whereas heat shock protein (${\alpha}$-B-crystallin, Hsp90, and GRP78) and antioxidant enzymes (SOD-1, SOD-3, catalase, GST, and GPXs) expression decreased on day 2 and then slowly recovered back to control levels on day 8. These results suggest that heat shock proteins and antioxidant enzymes were induced as protective mechanisms against 2,3,7,8-TCDD induced hepatotoxicity, and that prolonged exposure depressed their levels, which recovered to control levels due to reduced 2,3,7,8-TCDD induced hepatotoxicity.

Association of Heat Shock Protein Beta 1 (HSPB1) Gene Expression with Tenderness in Loin Muscle of Korean Cattle (Hanwoo) (한우 등심조직 내 heat shock protein beta 1 (HSPB1) 발현과 연도와의 관련성 연구)

  • Lim, Dajeong;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Bong-Hwan;Choi, Han-Ha;Seong, Hwan-Hoo;Hong, Seong-Koo;Kim, Nam-Kuk
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1523-1528
    • /
    • 2012
  • In a previous proteomic study, heat shock protein beta 1 (HSPB1) was detected as differentially expressed protein in longissimus thoracis between low (grade 3) and high (grade 1++) meat quality groups by 2DE gel electrophoresis. The present study investigated an association of HSPB1 expression at the level of gene and protein with Warner-Bratzler shear force (WBS) measured in 20 Hanwoo steers. An analysis of variance (ANOVA) between expression values and WBS showed that WBS was affected by HSPB1 expression (p<0.05). The expression (at both gene and protein level) of the HSPB1 was 2 times higher in the low WBS group than that in the high WBS group (p<0.01). This result suggests that the HSPB1 gene may be a candidate gene associated with tenderness in longissimus thoracis of Korean cattle.

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Expression of a Heat Shock Protein 70 (Hsp70) in Red Seabream Pagrus major Infected with Longicollum pagrosomi (구두충(Longicollum pagrosomi)에 감염된 참돔(Pagrus major)의 Heat Shock Protein 70 (Hsp70) 발현)

  • Park, Hyung-Jun;Min, Byung-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.163-169
    • /
    • 2018
  • This study examined the expression of heat shock protein 70 (Hsp70) in red seabream Pagrus major infected by the, acanthocephalan parasites Longicollum pagrosomi. We cloned the full-length Hsp70 cDNA from the liver of the red seabream. The full-length cDNA had a 1,950 bp open reading frame (ORF) that encoded a protein of 650 amino acids. The deduced amino acid sequence of Hsp70 contained all of the conserved Hsp70 family signature sequences and an adenosine triphosphate (ATP)/guanosine triphosphate (GTP) binding motif, including the EEVD (consensus sequence that terminates in Hsp70 family) consensus sequence. The expression of Hsp70 mRNA was upregulated int the fish head-kidney and liver, as determined by quantitative real-time PCR. We quantified the Hsp70 mRNA expression in normal red seabream and fish infected fish by L. pagrosomi. The expression of Hsp70 mRNA was significantly higher in the infected red seabream. These results suggest that Hsp70 play a role of protection against stress and inflammation caused by the parasite and may help maintain homeostasis.

Comparative study on Hsp25 expression in Mongolian gerbil and mouse cerebellum

  • Lee, Heang-Yeon;Kim, Seong-Hwan;Lee, Jae-Bong;Shin, Chang-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.469-482
    • /
    • 2006
  • The term 'heat shock protein (Hsps)' was derived from the fact that these proteins were initially discovered to be induced by hyperthermic conditions. In response to a range of stressful stimuli, including hyperthermia, immobilization, UV radiation, amino acid analogues, arsenite, various chemicals, and drugs the mammalian brain demonstrates a rapid and intense induction of the heat shock protein. Moreover, Hsps were expressed on the various pathological conditions including trauma, focal or global ischemia, hypoxia, infarction, infections, starvation, and anoxia. Especially, Hsp25 has a protective activity, facilitated by the ability of the protein to decrease the intracellular levels of reactive oxygen species (ROS) as well as its chaperone activity, which favors the degradation of oxidized proteins. Recently, it has clearly demonstrated that Hsp25 is constitutively expressed in the adult mouse cerebellum by parasagittal bands of purkinje cells in three distinct regions, the central zone (lobule VI-VII) and nodular zone (lobule IX-X), and paraflocculus. The Mongolian gerbil has been introduced into stroke study model because of its unique brain vasculature. There are no significant connections between the basilarvertebral system and the carotid system. This anatomy feature renders the mongolian gerbil susceptible to forebrain ischemia-induced seizure. The present study is designed to examine the pattern of Hsp25 expression in the cerebellum of this animal in comparison with that in mouse.

ATP-independent Thermoprotective Activity of Nicotiana tabacum Heat Shock Protein 70 in Escherichia coli

  • Cho, Eun-Kyung;Bae, Song-Ja
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.107-112
    • /
    • 2007
  • To study the functioning of HSP70 in Escherichia coli, we selected NtHSP70-2 (AY372070) from among three genomic clones isolated in Nicotiana tabacum. Recombinant NtHSP70-2, containing a hexahistidine tag at the amino-terminus, was constructed, expressed in E. coli, and purified by $Ni^{2+}$ affinity chromatography and Q Sepharose Fast Flow anion exchange chromatography. The expressed fusion protein, $H_6NtHSP70$-2 (hexahistidine-tagged Nicotiana tabacum heat shock protein 70-2), maintained the stability of E. coli proteins up to 90$^{\circ}C$. Measuring the light scattering of luciferase (luc) revealed that NtHSP70-2 prevents the aggregation of luc without ATP during high-temperature stress. In a functional bioassay (1 h at 50$^{\circ}C$) for recombinant $H_6NtHSP70$-2, E. coli cells overexpressing $H_6NtHSP70$-2 survived about seven times longer than those lacking $H_6NtHSP70$-2. After 2 h at 50$^{\circ}C$, only the E. coli overexpressing $H_6NtHSP70$-2 survived under such conditions. Our NtHSP70-2 bioassays, as well as in vitro studies, strongly suggest that HSP70 confers thermo-tolerance to E. coli.