• 제목/요약/키워드: Heat Shock Protein

검색결과 605건 처리시간 0.031초

Proteomic Analysis of Differentially Expressed Proteins in Bovine Endometrium with Endometritis

  • Choe, Chang-Yong;Park, Jeong-Won;Kim, Eun-Suk;Lee, Sung-Gyu;Park, Sun-Young;Lee, Jeong-Soon;Cho, Myung-Je;Kang, Kee-Ryeon;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.205-212
    • /
    • 2010
  • Endometritis is one of the primary reasons for reproductive failure. In order to investigate endometritis-associated marker proteins, proteomic analysis was performed on bovine endometrium with endometritis. In bovine endometritis, desmin, $\alpha$-actin-2, heat-shock protein (HSP) 27, peroxiredoxin-6, luteinizing hormone receptor isoform 1, collectin-43 precursor, deoxyribonuclease-I (DNase-I), and MHC class I heavy chain (MHC-Ih) were up-regulated. In contrast, transferrin, interleukin-2 precursor, hemoglobin $\beta$ subunit, and potassium channel tetramerisation domaincontaining 11 (KCTD11) were down-regulated in comparison to normal endometrium. The proteomic results were validated by semiquantitative-PCR and immunoblot analysis. The mRNA levels of desmin, transferrin, $\alpha$-actin-2, HSP27, KCTD11, and MHC-Ih were up-regulated by over 1.5-fold, and showed a pattern similar to their proteomic profiles. Desmin and $\alpha$-actin-2 protein showed positive correlations between proteomic analysis and immunoblot analysis. These results suggest that desmin and $\alpha$-actin-2 may play important roles in endometritis-related function, and could be useful markers for the diagnosis of bovine endometritis.

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells

  • Wang, Chun-Hua;Shyu, Rong-Yaun;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Lin, Yi-Yin;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.562-574
    • /
    • 2018
  • The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

The Expression of Adipophilin Is Frequently Found in Solid Subtype Adenocarcinoma and Is Associated with Adverse Outcomes in Lung Adenocarcinoma

  • Shin, Sun Ah;Na, Hee Young;Choe, Ji Young;Chung, Doohyun;Park, Mira;Oh, Sohee;Kim, Ji Eun
    • 대한병리학회지
    • /
    • 제52권6호
    • /
    • pp.357-362
    • /
    • 2018
  • Background: The up-regulation of the lipogenic pathway has been reported in many types of malignant tumors. However, its pathogenic role or clinical significance is not fully understood. The objective of this study was to examine the expression levels of adipophilin and related hypoxic signaling proteins and to determine their prognostic impacts and associations with the pathologic characteristics of lung adenocarcinoma. Methods: Expression levels of adipophilin, heat shock protein 27 (HSP27), carbonic anhydrase IX, and hypoxia-inducible factor $1{\alpha}$ were examined by immunohistochemical staining using tissue microarray blocks. Correlations between protein expression levels and various clinicopathologic features were analyzed. Results: A total of 230 cases of primary adenocarcinoma of the lung were enrolled in this study. Adipophilin expression was more frequent in males and with the solid histologic type. It was correlated with HSP27 expression. Patients with adipophilin-positive adenocarcinoma showed a shorter progression-free survival (PFS) (median PFS, 17.2 months vs 18.4 months) in a univariable survival analysis, whereas HSP27 positivity correlated with favorable overall survival (OS) and PFS. In a multivariable analysis, adipophilin and HSP27 were independent prognostic markers of both OS and PFS. Conclusions: Activated lipid metabolism and the hypoxic signaling pathway might play a major role in the progression of lung adenocarcinoma, especially in the solid histologic type.

Oral Administration of Mice with Cell Extracts of Recombinant Lactococcus lactis IL1403 Expressing Mouse Receptor Activator of NF-kB Ligand (RANKL)

  • Xuan, Biao;Park, Jongbin;Lee, Geun-Shik;Kim, Eun Bae
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1061-1073
    • /
    • 2022
  • Receptor activator of NF-kB ligand (RANKL) is known to play a major role in bone metabolism and the immune system, and its recombinant form has been expressed in bacterial systems for research since the last two decades. However, most of these recombinant forms are used after purification or directly using living cells. Here, there were cell extracts of recombinant Lactococcus lactis expressing mouse RANKL (mRANKL) used to evaluate its biological activity in mice. Mice were divided into three groups that were fed phosphate-buffered saline (PBS), wild-type L. lactis IL1403 (WT_CE), and recombinant L. lactis expressing mRANKL (mRANKL_CE). The small intestinal transcriptome and fecal microbiome were then profiled. The biological activity of mRANKL_CE was confirmed by studying RANK-RANKL signaling in vitro and in vivo. For small intestinal transcriptome, differentially expressed genes (DEGs) were identified in the mRANKL_CE group, and no DEGs were found in the WT_CE group. In the PBS vs. mRANKL_CE gene enrichment analysis, upregulated genes were enriched for heat shock protein binding, regulation of bone resorption, and calcium ion binding. In the gut microbiome analysis, there were no critical changes among the three groups. However, Lactobacillus and Sphingomonas were more abundant in the mRANKL_CE group than in the other two groups. Our results indicate that cell extracts of mRANKL_CE can play an effective role without a significant impact on the intestine. This strategy may be useful for the development of protein drugs.

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

전설적 불로장생약과 고려홍삼의 현대 과학적 효능과의 연관성 (A correlation of the modern scientific efficacy of Korean Red Ginseng with the legendary medicine for anti-aging and longevity)

  • 이영득
    • 인삼문화
    • /
    • 제2권
    • /
    • pp.39-70
    • /
    • 2020
  • 본고에서는 유래가 다른 상고사서의 상호 해석과 검증을 통하여, 위서(僞書)로 의심 받아 왔던 『부도지』, 『환단고기』, 『규원사화』의 기록이 논리적으로 실제 기록일 수 있음을 입증하였고, 『사기』 및 『열자』의 중국사서에도 등장하는 전설적인 '불로장생약'의 실체가 고려 인삼임을 밝혔다. 나아가 핵심 서적인 『부도지』의 인류이동 설명에 부합하는 Y 염색체 인류이동 지도를 참조하여, 각 인류 집단의 생활상을 기반으로 사상체질의 형성과 동남아인에 대한 고려인삼 열감문제의 기원이, 역사적 또는 과학적 관점에서 PPT유형 진세노사이드로 인한 체질문제로 추정하였다. 이 문제의 해결이 홍삼제조시의 PPT유형에 비하여 상대적으로 높은 함량의 PPD유형 진세노사이드 생산으로 해결되며, 또한 홍삼제조시 홍삼다당체의 함량 증가로, 홍삼다당체, PPD유형 진세노사이드, 원래 고려인삼에 다량 포함된 아르기닌에 의하여, 신체 내 '열충격단백질'의 발현이 증가되는 방법임을 설명함으로써, 고려 홍삼의 '아답토젠' 또는 '장생불사약'으로서의 효능을 과학적으로 해석할 수 있는 이론을 제시하였다. 마지막으로 미국삼(서양삼)과 고려인삼의 생육환경에 대한 고찰을 통하여, 그 차이점을 제시하였다.

담수 사육 감성돔, Acanthopagrus schlegeli의 수온 상승에 따른 HSP90, HSP70 mRNA의 발현 및 혈장 cortisol과 glucose 변화 (Expression of HSP90, HSP70 mRNA and Change of Plasma Cortisol and Glucose During Water Temperature Rising in Freshwater Adapted Black Porgy, Acanthopagrus schlegeli)

  • 최철영;민병화;김나나;조성환;장영진
    • 한국양식학회지
    • /
    • 제19권4호
    • /
    • pp.315-322
    • /
    • 2006
  • 본 연구에서는 담수사육 감성돔을 대상으로 수온을 상승시켰을 때, 세포적 스트레스 측면에서 HSP90 및 HSP70 mRNA의 발현 정도를, 신경-내분비적 스트레스 측면에서 혈장 cortisol 및 glucose 농도를 조사하였다. RT-PCR법을 이용하여 생식소로부터 HSP90 (891 bp) 및 HSP70 (465 bp) cDNA 단편을 클로닝 하여, 타 종과 그 상동성을 비교해 본 결과, 감성돔 HSP90은 참돔 HSP90과 99%, 무지개송어 HSP90과 95%, 대서양 연어HSP90과 94%, zebrafish HSP90과 94%로 나타났으며, 감성돔 HSP70은 무지개송어 HSP70과 96%, silver seabream HSP70과 95%, zebrafish HSP70과 95%의 상동성을 나타내었다. 감성돔의 사육수온을 $30\;^{\circ}C$로 상승시켰을 때, HSP90 mRNA는 모든 조직에서 그 발현 정도가 $20\;^{\circ}C$ 실험구에 비하여 $7{\sim}9$배 정도 높았으나, HSP70 mRNA는 생식소에서만 발현하는 것으로 나타났다. 혈장 cortisol 및 glucose 농도는 $20\;^{\circ}C$ 실험구에 비하여 $30\;^{\circ}C$ 실험구에서 유의하게 증가한 것으로 나타났다.