• Title/Summary/Keyword: Heat Recovery efficiency

Search Result 273, Processing Time 0.033 seconds

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Research on Performance of Large Rotor-type Heat Recovery Exchanger using CFD Analysis on Surface Corrugation (요철형상의 CFD 해석을 통한 대용량 로타형 폐열회수열교환기 성능에 관한 연구)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kim, Kun-Oh;Kum, Jong-Soo;Jeong, Seok-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.875-880
    • /
    • 2012
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. To develop large volume waste heat recovery heat exchanger, rotor type heat exchanger was simulated for the surface corrugation. Based on the simulation results produced $30,000m^3/h$ grade waste heat recovery, heat exchanger was performed for the actual experiment. In addition, performance tests exceed the capacity of a large waste heat recovery heat exchanger performance test methods proposed.

An Experimental Study on Performance Improvement for Exhaust Heat Recovery Ventilation System in a Lightweight Wall (벽체매립형 폐열회수 환기시스템의 열회수 성능 향상에 관한 실험적 연구)

  • Chung, Min-Ho;Oh, Byung-Kil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • Exhaust heat recovery ventilation systems conserve energy through enthalpy recovery between air intake and exhaust, and they are being increasingly used. An exhaust heat recovery ventilation system can be installed in the ceiling of a balcony or emergency evacuation space. However, in the case of fire, the emergency evacuation space has to by law remain as empty space, and therefore, a ventilation system can't be installed in an emergency evacuation space. Therefore, the need for a proper installation space for a ventilation system is emphasized. In this study, to install a heat recovery ventilation system in a lightweight wall, a heat exchanger was assembled of thickness below 140 mm. The efficiency of heat recovery was analyzed through performance experiment, in the case of the cooling and heating mode. The heat recovery efficiency increases when the surface area is increased, by using closer channel spacing in the heat exchanger, or by increasing the size of the heat exchanger.

Numerical Analysis of Wasted Heat Recovery Ventilator for Improving the Heat Exchange Efficiency (폐열회수 환기장치의 열교환 효율 개선을 위한 전산수치해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Park, Chul-Woo;Park, Kyung-Seo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, we performed numerical analysis to improve the heat exchange efficiency of wasted heat recovery ventilator which has a delivery and a exhaustion fan. One of the most important design factors that affect the efficiency of heat exchange is uniform counter-flow between inbound and outbound air flows. We had simulated several types of porous plates which were installed at air intake area. With plate having 45 degrees of installation angle and 15 mm diameter holes which are uniformly arranged, we can generate a uniform air flows at the area of porous media where inbound and outbound air flows are cross over. In addition, we installed a duct to reduce vortex flows at the outlet and to discharge exhaust airs rapidly. By using the proposed numerical assessment, we expect the improvement of the heat exchange efficiency of ventilator.

An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator

  • Han, Hwa-Taik;Kim, Min-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study investigates the air leakage and heat transfer characteristics of a commercially available rotary-type air-to-air heat exchanger with a fiber polyester matrix. Crossover leakage between the exhaust and supply air is measured using a tracer gas method for various ventilation rates and rotational speeds of the wheel. A correlation equation for the leakage is obtained by summing up pressure leakage and carryover leakage. The pressure leakage is observed to be a function of ventilation rate only, and the carryover leakage is found to be a linear function of wheel speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiency by taking into account the leakage ratio. The heat recovery efficiency decreases, as the ventilation rate increases. As the wheel speed increases, however, the efficiency increases initially but reaches a constant value for the speeds over 10rpm.

A Study on the Performance of Heat Recovery Ventilators for Apartment Houses (공동주택용 폐열회수형 환기장치의 성능에 관한 측정 연구)

  • Chang, Hyun-Jae;Hong, Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • Heat recovery ventilator(HRV) is recommended to improve indoor air quarlity (IAQ) and energy conservation in apartment houses. Recently, in Korea, HRV is produced from many manufacturers. However, there have been not so many experiences to apply HRV in apartment houses and verification on the performance such as heat exchange efficiency, carry-over rate, internal leakage, etc. have not been carried out sufficiently. So in this study, fan performance, heat exchange efficiency, air leakage, internal exhaust leakage, external leakage and sound level of HRV were examined for selected HRV models under domestic and international standard. Results of performance test, there were need to improve latent heat exchange efficiency and sound level of HRV.

A Study on Heat Transfer Characteristics and Uncertainty of Heat Recovery Ventilator for Various Outdoor Temperature/Humidity Conditions (외기 온습도 조건에 따른 폐열회수 환기장치의 열전달 특성 및 불확실성에 관한 연구)

  • Han, Hwa-Taik;Choo, Youn-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.608-613
    • /
    • 2008
  • The purpose of the present paper is to investigate the effect of outdoor weather conditions on the performance of a heat recovery ventilator. Experiments have been performed by varying outdoor temperature/humidity conditions with the indoor conditions fixed at the standard conditions by KARSE. Results indicate humidity efficiency shows larger uncertainties than temperature efficiency in general. With the heat generation by an internal fan removed, the modified temperature efficiency remains almost constant regardless of the indoor-outdoor temperature difference. The enthalpy efficiency can have very large or negative values in case the outdoor conditions are in the vicinity of the indoor enthalpy line. The direction of heat flow, in such a case, can be opposite to that of moisture flow between two air streams. Discussions are included about various interesting features of the psychrometric processes taking place in a heat recovery ventilator.

Analysis of Performance of Heat Pump System with Flue Gas Heat Recovery through Field Test (실증운전을 통한 배가스 열회수 히트펌프 시스템의 성능 분석)

  • Lee, Seung-Ho;Lee, Gil-Bong;Lee, Young-Soo;Park, Sang-Il;Ko, Chang-Bok;Baik, Young-Jin;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A field test of a 70 kW heat pump system with flue gas heat recovery was performed by an experiment at the Korea Institute of Energy Research. The flue gas is exhausted from a 320 RT absorption chiller-heater in the heating season. Using this flue gas, source water of the heat pump is heated by a condensed-type heat exchanger in the chimney. The operating characteristics of the heat recovery heat pump system were analyzed. Based on the results of the experiments, operating maps were obtained, and an optimum operating range is suggested, in which the return and heat source water temperature are $51^{\circ}C$ and $31^{\circ}C$, respectively. Additionally, economic analysis of this system was conducted and about 50% energy cost savings can be expected in the heating season.