• Title/Summary/Keyword: Heat Output

Search Result 543, Processing Time 0.033 seconds

Control Methods of the Single-Phase Inverter Heat Treatment System (단상 인버터 열처리 시스템의 제어기법)

  • Yang, S.G.;Tuan, H.A.;Chun, T.W.;Lee, H.H.
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.280-281
    • /
    • 2018
  • The methods for adjusting the output voltage as well as the heater temperature of a single-phase inverter for the heat treatment are proposed. The output voltage of the single-phase inverter is limited to 60 V for safety. The time constant of heater temperature is much higher than that of the output voltage. The stability may be deteriorated due to such large time constant difference. In order to ensure the stability, a hysteresis on/off control method for the heater temperature control is used. The performances for the proposed methods are verified with the experiments.

  • PDF

A Comparative Analysis of the Mechanical Power from a Small LTD Heat Engine (소형 LTD 히트 엔진의 종류에 따른 기계적 출력 비교 분석)

  • Kim, Yeongmin;Kim, Wonsik;Jeong, Haejun;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.59-66
    • /
    • 2017
  • This paper compares the output power of different types of small Stirling engines in conjunction with the utilization of low grade thermal energy. A series of experimental measurements were performed to assess the output power of each engine under different conditions of the temperature difference between the hot and cold ends as well as applied weight. Results are presented in terms of torque and output power per heat transfer area. Among tested, the MM-7 engine produced the highest power of 4.455mW ($321mW/m^2$) under a temperature difference of $40^{\circ}C$.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Design of a Swash Plate Type of Steam Expander for Waste Heat Recovery (폐열 회수용 사판식 스팀 팽창기 설계)

  • Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2011
  • For a steam Rankine cycle to recover waste heat from the exhaust gas of an Internal combustion engine, a swash plate type of expander as a power conversion unit has been designed. Numerical simulation has been carried out to estimate the performance of the designed expander. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 2.67 kW from the exhaust gas waste heat of 25.2 kW. The expander output increased almost linearly with the amount of exhaust gas waste heat in the range of from 5~40 kW, and the expander and Rankine cycle efficiencies showed gradual decreases in the ranges of 72.2%~69.5% and 10.8%~10.4%, respectively.

Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화)

  • Lee, Hoki;Lee, Dongkil;Park, Gunil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables (3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;CHOUN, MYOUNGHOON;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

Development of cold forging process for OP shaft and the improvement of forgeability of SNCM steel (OP shaft용 냉간 단조 성형 공정 개발 및 SNCM강의 단조성 향상에 관한 연구)

  • 이광오;제진수;강성수;전만수;남원수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.141-144
    • /
    • 2002
  • This study presents the enhancement of forgeability of SNCM522H materials. Target parts are output shaft(OP shaft) used as components of power train for automobiles. To carry out cold forging process of OP shaft by 1 pass instead of existing 2 pass process, studies in terms of process design and heat treatment were performed. To introduce the new process, Finite element Method are accomplished, and to verify the validity of proposed heat treatment cycle, several experiments(Hardness test, Observation of optical microstructures, tensile test) are carried out.

  • PDF

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy (LNG 냉열을 이용하는 동력사이클 열역학 해석)

  • 최권일;장홍일
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

GASIFICATION OF CARBONEOUS WASTES USING THE HIGH TEMPERATURE REFORMER

  • Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2005
  • Gasification of carbonaceous wastes such as shredded tire, waste lubricating oil, plastics, and powdered coal initiates a single-stage reforming reactor(reformer) Without catalyst and a syngas burner. Syngas is combusted with $O_2$ gas in the syngas burner to produce $H_2O\;{and}\;CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevates the temperature of reactor above $1,200^{\circ}C$, and hydrogen gas fraction reaches 65% of the product gas output. Reactants and heat necessary for the reaction are provided through the syngas burner only. Neither $O_2$ gas nor steam is injected into the reforming reactor. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and the product syngas is recycled into syngas burner.

Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a (저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low-temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.