• Title/Summary/Keyword: Heat Loss Effect

Search Result 516, Processing Time 0.022 seconds

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

The Effect of Gasket Shape and Material Properties on Heat Losses in a Refrigerator (냉장고 가스켓 주위 형상 및 물성치 변화에 의한 열손실 영향 연구)

  • Ha, Ji-Soo;Jung, Kwang-Soo;Kim, Tae-Kwon;Shim, Jae-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.413-418
    • /
    • 2010
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation for the effects of various effort to reduce heat losses through the gasket. The first trial is to extend the inner gasket to prevent the heat loss flowing from the inner of refrigerator. The effects of thermal conductivity changes of gasket and magnet are investigated by the numerical heat transfer analysis. The position change of hot line is also examined in the present research. From the present result of the numerical simulation of heat transfer, we are able to reduce the heat loss about 20~40% by using inner gasket extension. The reducing of thermal conductivity of gasket is considerable in the heat loss reduction. On the other hand, the thermal conductivity change of magnet has no apparent effect in heat loss reduction. The position change of hot line has considerable positive effect in the reduction of heat loss near gasket region.

Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant (원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.

A Study on the Radiation Heat Transfer Effect near a Refrigerator Gasket (냉장고 가스켓 주위의 복사열전달 효과에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1605-1610
    • /
    • 2015
  • The present study has been accomplished to elucidate the effect of radiation heat transfer in the heat transfer analysis of refrigerator gasket, which has near 30% of refrigerator heat loss. The numerical heat transfer analysis has been conducted with the simplified modeling of refrigerator gasket. From the present CFD analysis, heat loss at the gasket is $25.6W/m^2$ for the case without radiation effect and that for the case with radiation effect is $55.0W/m^2$, which is 2.2 times greater heat loss. The radiation protection layers were installed in the gasket from 0 to 7 and the case with 7 layers has 33% reduction effect of heat loss compared with the case without any radiation protection layer. Additionally, it is better effect of radiation heat loss reduction that the radiation protection layers would be placed to the outer or inner side of gasket rather than placing to the center of gasket.

Effect of Air Gap Thickness on Top Heat Loss of a Closed-loop Oscillating Heat Pipe Solar Collector

  • Nguyen, Kim-Bao;Choi, Soon-Ho;Yoon, Doo-Ho;Choi, Jae-Hyuk;Oh, Cheol;Yoon, Seok-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • In this paper, effect of air gap thickness between absorber plate and glass cover on top heat loss of a closed loop oscillating heat pipe (CLOHP) solar collector was investigated. The CLOHP, which is made of copper with outer diameter of 3.2mm and inner diameter of 2.0mm, comprises 8 turns with heating, adiabatic and cooling section. The heating section of the heat pipe was attached to absorber plate which heated by solar simulator simulated by halogen lamps. The cooling section of the heat pipe was inserted into collector's cooling section that made of transparent acrylic. Temperatures of absorber plate, glass cover, and ambient air measured by K-type thermocouple and were recorded by MV2000-Yokogawa recorder. Top heat loss coefficients and top heat loss of the collector corresponding to some cases of air gap thickness were determined. The result of experiment shows the optimal air gap thickness for minimum top heat loss of this solar collector.

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

Analysis of Heat Loss Effect of Combustion in Closed Vessel (정적 연소실에서의 열 손실 해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

The Effect of a Wing on the Heat toss from a Modified Rectangular Fin

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.192-200
    • /
    • 2002
  • A modified asymmetric rectangular fin is analysed using the two-dimensional separation of variables method. This modified rectangular fin is made by attaching the wing on the top side of a rectangular fin. Heat loss from each side of this modified rectangular fin is calculated. The relative increasing ratio of heat loss between a modified rectangular fin and a rectangular fin is presented as a function of dimensionless fin volume, wing height and the location of the wing. Especially, to show the remarkable effect of the wing on the heat loss, the relative increasing ratios of heat loss between two different volume increasing methods are listed.

The Effect of the Number of Nodes on the Exactness of Heat Loss in the Finite Difference Method (유한차분법에서 열손실 정확도에 미치는 Node 개수의 영향)

  • Jeon, Jeon-Woo;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.195-202
    • /
    • 1998
  • The effect of the number of nodes on the heat loss from a rectangular fin for a finite difference method is studied. There are two ways for selecting nodes for the upper half fin in this finite difference method. In the first place, all the ${\Delta}x$ are the same and all the ${\Delta}y$ are the same for the entire upper half fin. Incremental length of x (i.e. ${\Delta}x$) is divided by two near the fin tip while all the ${\Delta}y$ are the same for another way. The results show that 1) About 30 nodes are enough to obtain the satisfactory exact analysis (relative error < 5%) on the heat loss for a given range of Biot number in case of short fin (i.e. $L{\leq}2$). 2) Under usual circumstances (Bi<0.1), the relative error of heat loss between using 30 nodes and 90 nodes is within 4% for given range of non-dimensional fin length. 3) The relative error of the calculated heat loss (the number of node=90) as compared to the expected exact heat loss is less then 1.5% for Bi=0.1 and L=10 while that is over 13% for Bi=1.0 and L=10.

  • PDF