• Title/Summary/Keyword: Heat Loss

Search Result 2,103, Processing Time 0.024 seconds

Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix - (스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

Reduced alveolar bone loss in rats immunized with Porphyromonas gingivalis heat shock protein (Porphyromonas gingivalis 열충격 단백으로 면역한 백서에서의 치조골 파괴의 감소)

  • Yi, Ni-Na;Lee, Ju-Youn;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.555-562
    • /
    • 2003
  • The present study has been performed to evaluate Porphyromonas gingivalis (P.gingivalis) heat shock protein(HSP)60 as a candidate vaccine to inhibit multiple bacteria-induced alveolar bone loss. Rats were immunized with P.gingivalis HSP60 and experimental alveolar bone loss was induced by infection with multiple periodonto -pathogenic bacteria. Post-immune rat anti-P.gingivalis HSP IgG levels were significantly elevated and have demonstrated highly significant inverse relationship with the amount of alveolar bone loss induced by multiple bacteria. Results from PCR detection of subgingival bacterial plaque indicated that the vaccine successfully eradicated the multiple pathogenic species. We concluded that P.gingivalis HSP60 could potentially be developed as a vaccine to inhibit periodontal disease induced by multiple pathogenic bacteria.

Numerical Study on the Premixed Flame Instability and Nonlinear Behavior (예혼합화염의 불안정성 및 비선형적 거동에 관한 수치적 연구)

  • Kang, Sang-Hun;Baek, Seung-Wook;Im, Hong G.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.281-286
    • /
    • 2005
  • To understand fundamental characteristics of combustion in a small scale device, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by two-dimensional high-fidelity numerical simulation. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

  • PDF

A Study on the Development of Hydrogen Fueled Engine : Heat Loss of Direct Injection Hydrogen Fueled Engine (수소기관 개발을 위한 기초연구(직접분사식 수소기관의 열손실))

  • Nam, Seong Woo;Lee, Jong Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Analysis of heat loss is needed to achieve the high performance and high efficiency in hydrogen engine. So, cooling losses at each part of the direct injection hydrogen fueled engine were measured to evaluate the behavior and distribution of heat loss. Unsteady instantaneous temperature and heat flux at cylinder head were measured by use of instantaneous temperature prove. And these results were compared with those of gasoline engine.

  • PDF

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

Influence of Heat-treatment Temperature on Microwave Absorbing Properities of Ni-Zn Ferrite (Zi-Zn Ferrite의 전파흡수특성에 미치는 열처리온도의 영향)

  • 조성백;권경일;최경구;김성수;김재묵
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.177-182
    • /
    • 1992
  • The effect of heat-treatment temperature on the microwave absorbing properties was investigated in Ni0.8Zn0.2Fe2O4 specimens. The composite specimens were prepared by modling and curing the mixture of prereacted ferrite powder and silicone rubber. The measurement of complex permeability and permittivity was made by the reflection/transmission method. The most sensitive material constants with heat-treatment temperature is the imaginary (loss) component of permeability. The higher the heat-treatment temperature, the greater the magnetic loss. The composite specimens with high magnetic loss exhibited superior microwave absorbing properties. The quantitative estimation of microwave absorbing properties were made by plotting the observed material constants on the calculated solution map of impedance-matching.

  • PDF

Effect of Asymmetric Root Temperature on the Heat Loss From a Rectangular Fin Under Unequal Surrounding Heat Convection Coefficient (주위의 열대류계수가 다를때 사각핀으로부터의 열손실에 대한 비대칭적인 핀바닥온도의 영향)

  • 강형석;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1567-1571
    • /
    • 1994
  • Under the assumption that thermal conductivity of the fin is constant and the conditions ate steady state, effects of non-constant and thermally asymmetric root temperature and unequal surrounding convection coefficients of the fin on the heat loss from a fin of rectangular profile are investigated. The heat loss form a rectangular fin becomes maximum when the highest root temperature deviates from the fin center to the fin side which has a higher convection coefficient as surrounding convection coefficients of the fin increase and as the difference between the convection coefficient of fin top side and that of fin bottom side increases.

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

Study on the Heat Generation of Tank Track Rubbers under the Consideration of the Road Conditions (노면상태를 고려한 전차 궤도 고무의 열발생에 관한 연구)

  • 김병탁;김광희;윤문철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.166-175
    • /
    • 2002
  • Tank track rubbers, which undergo dynamic stresses and strains under various road conditions, leads to a result of considerable internal temperature rise due to the heat generation. Since rubber materials are not fully elastic, a part of the mechanical energy is converted into heat because of the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build-up, i.e. internal temperature rise which, if excessive, exerts a bad influence upon the performance and the life of the tank track rubbers. The purpose of this paper is to predict temperature distributions of the rubber components off tank track subjected to complex dynamic loads under various read conditions. In steady state analysis temperature fields are displayed in contour shapes, and in unsteady analysis the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

Effects of Rib Cross Section Shapes on Heat Transfer of a Rib-Roughened Duct (터빈 기익 내부관 열전달 증대를 위해 설치된 요철의 형상 효과)

  • Wu, Seong Je;Kwon, Hyuk Jin;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.149-157
    • /
    • 1999
  • Heat transfer in a duct is augmented remarkably by rib turbulators. However, increasing friction loss is accompanied due to ribs disturbing flows. Hence, pressure drops and heat transfer are considered simultaneously to decide heat/mass transfer performance in a rib-roughened duct. In the present study, the effects of rib cross section shape on pressure drop through a duct are investigated as well as those on heat transfer characteristics. The results show that the characteristics of heat/mass transfer and friction loss in the duct roughened with triangular ribs are similar to those with square ribs, while significantly different from those with semicircular ribs. The best performance in the duct is obtained by using semicircular shaped ribs among three types of ribs for the large rib angles of ${\alpha}{\geq}63^{\circ}$.