• 제목/요약/키워드: Heat Loss

검색결과 2,089건 처리시간 0.034초

수직관내 유리알-물 유동의 압력손실 및 열전달 성능 (Pressure Loss and Heat Transfer Characteristics of the Glass Beads-Water Flow in a Vertical Tube)

  • 김내현;김정식;이윤표
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.550-560
    • /
    • 1996
  • Recently, fluidized bed heat exchangers with circulating liquid are widely used in a number of places-chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

수직관내 유리알-물 유동의 압력손실 및 열전달 성능 (Pressure Loss and Heat Transfer Characteristics of the Glass Bead - Water Flow in a Vertical Tube)

  • 김내현;김정식;이윤표
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.121-131
    • /
    • 1996
  • Recently, circulating liquid fluidized bed heat exchangers are widely used in a number of places - chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. It also increased as the particle diameter increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

Optimization of a 3-D Thermally Asymmetric Rectangular Fin

  • 강형석
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1541-1547
    • /
    • 2001
  • The non-dimensional fin length for optimum heat loss from a thermally asymmetric rectangular fin is represented as a function of the ratio of the bottom surface Biot number to the top surface Biot number, fin tip surface Biot number and the non-dimensional fin width. Optimum heat loss is taken as 98% of the maximum heat loss. For this analysis, three dimensional separation of variables method is used. Also, the relation between the ratio of the bottom surface Biot number to the top surface Biot number and the ratio of the right surface Biot number to the left surface Biot number is presented.

  • PDF

층류 CH4/Air 예혼합화염의 하류영역에서 NO 농도 예측을 위한 열손실 모델의 검토 (An Investigation of the Heat Loss Model for Predicting NO Concentration in the Downstream Region of Laminar CH4/Air Premixed Flames)

  • 황철홍;이창언;금성민;이기만;신명철;김세원
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.486-494
    • /
    • 2009
  • One-dimensional modeling of $CH_4$/air premixed flame was conducted to validate the heat loss model and investigate NOx formation characteristics in the postflame region. The predicted temperature and NO concentration were compared to experimental data and previous heat loss model results using a constant gradient of temperature (100 K/cm). The following conclusions were drawn. In the heat loss model using steady-state heat transfer equation, the numerical results using the effective heat loss coefficient ($h_{eff}$) of $1.0\;W/m^2K$ were in very good agreement with the experiments in terms of temperature and NO concentration. On the other hand, the calculated values using the constant gradient of temperature (100 K/cm) were lower than that in the experiments. Although the effects of heat loss suppress NO production near the flame region, a significant difference in NO concentration was not found compared to that under adiabatic conditions. In the postflame region, however, there were considerable differences in NO emission index as well as the contribution of NO formation mechanisms. In particular, in the range of ${\phi}\;{\geq}\;0.8$, the prompt NO mechanism plays an important role in the NO reduction under the adiabatic condition. On the other hand, the mechanism contributes to the NO production under the heat loss conditions.

풍력터빈 PM형 동기발전기의 와전류손실과 열 해석에 관한 연구 (A Study on Rotor Eddy Current Loss and Thermal Analysis of PM Synchronous Generator for Wind Turbine)

  • 최만수;장영학;박태식;정문선;문채주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1575-1581
    • /
    • 2014
  • In this paper, eddy current loss, iron loss and heat transfer of PMSG with 2,000kW capacities were analyzed for wind turbine. The PMSG with 3 split magnet was analyzed using ansoft maxwell commercial program and, generator was tested by Back to Back converter with no load condition at laboratory. Rotor surface temperature was measured by Pt100 sensors for investigating heat transfer from rotor to atmosphere. The simulation results shows 27.4kW eddy current loss in no load condition and 50.2kW eddy current loss in rated load condition with 3 split magnet, and also shows 4.3kW iron loss in no load condition and 7.3kW iron loss rated load condition. The heat transfer coefficient of convection between rotor surface and atmosphere was investigated by $9.6W/m^2{\cdot}K$. Therefore the heat transfer from rotor to atmosphere was about 17kW(54%) and from rotor to air-gap was about 14.6kW(46%) in no load condition. It is identified that the cooling system for stator have to include the 46% of iron loss, and heat dissipation structure of rotor surface have to be suggested and designed for efficiency improvement of generator.

$CH_4$/Air 예혼합화염의 고효율 연소조건에서 열손실에 따른 NOx 및 CO 배출특성 (Emission Characteristics of NOx and CO with Heat Loss Under High Efficiency Combustion Conditions of $CH_4$/Air Air Premixed Flame)

  • 현승호;황철홍;이창언;김세원;장기현
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Emission characteristics of NOx and CO with heat loss under high efficiency combustion conditions of $CH_4$/Air prmixed flame were examined numerically using detailed-kinetic chemistry. The one-dimensional combustor length was fixed 5cm, and the equivalence ratio was varied from 0.75 to 0.95. To consider the effects of heat loss on NOx and CO formation, the radiative heat loss rate and combined heat loss rate of conductive and convective heat transfer are included. The following conclusions were drawn. In order to reduce the NOx and CO emission level simultaneously, the temperature of product gases must be reduced under 1,800K as soon as possible but kept over 1,300K during the residence time which is needed to converge CO to $CO_2$.

  • PDF

CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성 (The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame)

  • 황철홍;현승호;탁영조;이창언
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석 (3D simulation of Heat transfer in MEMS-based microchannel)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석 (Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange)

  • 신현호;남상운
    • 원예과학기술지
    • /
    • 제33권5호
    • /
    • pp.647-657
    • /
    • 2015
  • 원예시설의 환경설계 중 난방부하 산정방법에 대한 검증을 위하여, 대규모 플라스틱 온실에서 총난방부하와 틈새환기율, 지중전열량을 계측하여 계산결과와 비교 분석하였고, 지중전열 및 틈새환기가 온실의 난방부하에 미치는 영향을 검토하였다. 실험기간 동안 실내기온은 $13.3{\pm}1.2^{\circ}C$, 실외 기온은 $-9.4{\sim}+7.2^{\circ}C$의 범위를 보였으며, 우리나라의 난방 설계 외기온 범위에서 유효한 것으로 확인하였다. 가스트레이서법으로 측정한 틈새환기율은 평균 $0.245h^{-1}$로 나타났다. 온실의 피복면적에 일정한 환기전열계수값을 사용하는 방법은 온실의 규모에 따라서 문제가 있는 것으로 분석되었다. 따라서 환기전열부하는 온실의 체적과 틈새환기율을 이용하는 방법이 합리적인 것으로 판단된다. 온실 중앙에서 측정한 지중열류는 실내외 기온차에 따라 음으로 약간 증가하는 경향을 보이고, 온실 측면에서 측정한 지중열류는 실내외 기온차에 따라 양으로 크게 증가하는 경향을 보였다. 계측 결과를 바탕으로 온실의 외주부를 통한 열손실 개념을 도입한 새로운 지중전열부하 산정 방법을 개발하였으며, 검증결과 잘 일치하는 것으로 나타났다. 관류열부하는 대체로 실내외 기온차에 비례하는 것으로 나타났으나, 열관류율은 작아지는 경향을 보였다. 따라서 관류열부하 산정시 설계조건에 따라 열관류율의 선택에 주의를 기울여야 할 것으로 판단된다. 실험온실의 열관류율은 평균 $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$로 단일피복의 플라스틱 온실 대비 60%의 열절감율을 보이는 것으로 나타났다. 전체 난방부하 중에서 관류열부하가 84.7~95.4%, 환기전열부하가 4.4~9.5%, 지중전열부하가 -0.2~+6.3%를 차지하는 것으로 나타났다. 관류열부하는 실내외 기온차가 낮은 그룹에서 더 큰 비율을 차지하고, 환기전열 부하는 실내외 기온차가 높은 그룹에서 더 큰 비율을 차지하는 것으로 나타났다. 지중전열부하의 경우 실내외 기온차가 낮은 그룹에서는 부하를 경감시키는 방향으로 작용하고, 실내외 기온차에 따라 부하를 증가시키거나 경감시키는 방향으로 작용하는 것으로 나타났으므로 이 기준 온도차의 선택이 중요한 것으로 판단된다. 지중전열부하에 비하여는 환기전열부하가 더 큰 비중을 차지하므로 에너지 절감을 위해서는 틈새환기율을 줄일 수 있는 대책이 필요한 것으로 판단된다.

지능형 헬스케어 욕조시스템 개발을 위한 온수 온도변화 (Change of the Warm Water Temperature for the Development of Smart Healthecare Bathing System)

  • 김기범
    • Korean Chemical Engineering Research
    • /
    • 제44권3호
    • /
    • pp.270-276
    • /
    • 2006
  • 본 연구에서는 전도열손실과 증발에 의한 열손실을 바탕으로 욕조의 자유표면에서 일어나는 온수의 열손실을 해석하고자 한다. 연구결과 욕조의 성능을 평가할 수 있는 식을 열전달 기본식으로 부터 관계식을 도출하였으며 이 식은 매우 시성적이며 정량적이었다. 특히 욕조 내 온수의 냉각은 증발에 의한 열손실이 지배적이었다. 또한, 온수의 온도 냉각 속도는 온수의 온도에는 크게 영향을 받지 않으나 욕실의 습도에 따라 크게 영향을 받는 것으로 확인되었다. 그러므로 욕조의 온도는 $41{\sim}45^{\circ}C$를 유지하며 욕실의 습도가 95%를 유지하는 것이 가장 효과적이라 판단된다.