• Title/Summary/Keyword: Heat Island

Search Result 490, Processing Time 0.034 seconds

An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate (도시·건축형태와 미기후의 관계에 대한 관찰 연구)

  • Lee, Gunwon;Jeong, Yunnam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.109-119
    • /
    • 2018
  • This study investigates the effect of urban and architectural forms on the microclimate in urban areas. It applies urban and architectural elements such as urban form and tissue and building form and characteristics as the main influences on the microclimate within urban area. Among the 23 Automated Weather Stations (AWS) installed within Seoul city by the Korea Meteorological Administration, 6 sites were selected for the analysis, based on their different urban and architectural characteristics, and actual measurements were conducted in August 2017 using individual AWS equipment. Also, the measurements of microclimate and urban and architectural elements within a 500m radius of the AWS measurement points were collected and analyzed. The result of the analysis shows that the microclimate elements, such as wind speed, solar radiation, and temperature, were affected by the direction of the streets, the width, depth, and height of the buildings, the topographic elevation and direction and the traffic volume. This study is expected to contribute to mitigating urban heat island effect and setting the foundation for sustainable cities through development of urban management methods and techniques including the relationship between built environment elements and microclimate.

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.

Impacts of Three-dimensional Land Cover on Urban Air Temperatures (도시기온에 작용하는 입체적 토지피복의 영향)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The purpose of this study is to analyze the impacts of three-dimensional land cover on changing urban air temperatures and to explore some strategies of urban landscaping towards mitigation of heat build-up. This study located study spaces within a diameter of 300m around 24 Automatic Weather Stations(AWS) in Seoul, and collected data of diverse variables which could affect summer energy budgets and air temperatures. The study also selected reflecting study objectives 6 smaller-scale spaces with a diameter of 30m in Chuncheon, and measured summer air temperatures and three-dimensional land cover to compare their relationships with results from Seoul's AWS. Linear regression models derived from data of Seoul's AWS revealed that vegetation volume, greenspace area, building volume, building area, population density, and pavement area contributed to a statistically significant change in summer air temperatures. Of these variables, vegetation and building volume indicated the highest accountability for total variability of changes in the air temperatures. Multiple regression models derived from combinations of the significant variables also showed that both vegetation and building volume generated a model with the best fitness. Based on this multiple regression model, a 10% increase of vegetation volume decreased the air temperatures by approximately 0.14%, while a 10% increase of building volume raised them by 0.26%. Relationships between Chuncheon's summer air temperatures and land cover distribution for the smaller-scale spaces also disclosed that the air temperatures were negatively correlated to vegetation volume and greenspace area, while they were positively correlated to hardscape area. Similarly to the case of Seoul's AWS, the air temperatures for the smaller-scale spaces decreased by 0.32% ($0.08^{\circ}C$) as vegetation volume increased by 10%, based on the most appropriate linear model. Thus, urban landscaping for the reduction of summer air temperatures requires strategies to improve vegetation volume and simultaneously to decrease building volume. For Seoul's AWS, the impact of building volume on changing the air temperatures was about 2 times greater than that of vegetation volume. Wall and rooftop greening for shading and evapotranspiration is suggested to control atmospheric heating by three-dimensional building surfaces, enlarging vegetation volume through multilayered plantings on soil surfaces.

A Study on the Effect of Cold Water Mass on Observed Air Temperature in Busan (부산지역 기온에 미치는 냉수대의 영향에 대한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Suh, Young-Sang;Han, In-Seong;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.132-146
    • /
    • 2014
  • The effects of the cold air generated from large cold water mass at the coastal area on observed air temperature in Busan were investigated using AWS(Automatic Weather Station) data at the Busan area operated by Korea Meterological Administration and SST(Sea Surface Temperature) data at the Gijang and Busan area operated by Korean National Fisheries Research Development Institute. First, the temperature difference between the coastal area and the city area was about $1^{\circ}C$ during cold water mass day while it was about $0.5^{\circ}C$ if cold water mass was not appeared. Second, for day time, the temperature at the coastal area was about $1^{\circ}C$ lower than that at the city area during cold water mass day, but the difference was only about $0.4^{\circ}C$ without cold water mass. On the other hand, for night time, the temperature at the coastal area was about $1.2^{\circ}C$ lower than that at the city area during cold water mass day and the difference was about $0.9^{\circ}C$ without cold water mass. As a result, temperature differences at night time were higher than those at day time whether or not cold water mass appeared. The reason for higher temperature at night time might be the urban heat island phenomenon.

Production Traits and Stress Responses of Five Korean Native Chicken Breeds (한국토종닭 5품종의 생산능력 및 스트레스 반응 정도)

  • Cho, Eun Jung;Choi, Eun Sik;Jeong, Hyeon Cheol;Kim, Bo Kyung;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.47 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • This study presents the production characteristics and physiological characteristics of five Korean native chicken (KNC) breeds consisting of Hwanggalsaek Jaeraejong (HJ), Korean Rhode Island Red (KR), Korean White Leghorn (KL), Korean Brown Cornish (KC), and Korean Ogye (KO). We investigated their production performances, vitalities, and stress responses. We measured the survival rate, body weight, age at first egg-laying, hen-day egg production, egg weight, amount of telomeric DNA, heterophil-lymphocyte ratio (H/L ratio), and heat shock protein (HSP)-70, HSP-90α and HSP-90β gene expression levels for 493 KNCs. The survival rate was highest in KR, and lowest in KO. Body weights were steadily high in the order of KC, KR, HJ, KO and KL. Average hen-day egg production was highest in KL, and lowest in KC. While the amount of telomeric DNA was highest in KR, and lowest in KC. Furthermore, both the H/L ratio and the HSP-90β gene expression level were highest in KC, and lowest in KR. These results indicated that the KR breed was highly resistant to stress, whereas KC was more susceptible to stress. Taken together, it is considered that with improvements the KC breed would be more suited to be used as a Korean broiler breed while KL would be more appropriately used as a Korean layer breed. In addition, it is considered that the KR breed is appropriate to be used as a maternal chicken breeder based on good production capacity and excellent robustness, while the HJ breed is desirable to be improved as a high-quality Korean meat breed based on its excellent meat quality.

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Analysis of the Cold Air Flow in Suwon for the Application of Urban Wind Corridor (도시 바람길 활용을 위한 수원시 찬공기 유동 분석)

  • CHA, Jae-Gyu;CHOI, Tae-Young;KANG, Da-In;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.24-38
    • /
    • 2019
  • Due to the dramatic spatial changes caused by industrialization, environmental problems such as air pollution and urban heat island phenomenon, etc. are occurring in cities. In this case, the wind corridor, which is a passage through which fresh and cool air generated in forests outside cities move to the downtown, can be used as a spatial planning method for improving urban environmental problems. Cold air is determined by the characteristics of the flow depending on the topography and land use of cities, and based on this, the medium- and long-term plan should be established. Therefore, this study analyzed the flow of cold air at night through the KLAM_21 model in Suwon-si, Gyeonggi-do, to prepare the basic data required to apply the wind corridors. As a result, it turned out that cold air of Suwon-si was mainly generated from Gwanggyo Mountain that is a large mountain area in the north, and flowed into the urbanization promotion area, and about three hours after sunset, cold air flowed into the downtown. By district, the depth, wind speed, and direction of the cold air layer were formed differently according to the characteristics of the topography and land use. In the areas where large forests were adjacent, the flow of cold air was active. There are three main wind corridors where cold air flows to the downtown of Suwon-si, all of which are formed around rivers. Especially, if the connection between rivers and the surrounding green areas is high, the effect of wind corridors is found to be significant. In order to utilize the wind corridors of Suwon-si, based on the results of this study, it is necessary to make climate maps through actual survey and complex analysis of cold air flow and establish mid-to-long-term plans for the conservation and expansion of major wind corridors.

Management Strategies of Ventilation Paths for Improving Thermal Environment - A Case Study of Gimhae, South Korea - (도시 열환경 개선을 위한 바람길 관리 전략 - 김해시를 사례로 -)

  • EUM, Jeong-Hee;SON, Jeong-Min;SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.115-127
    • /
    • 2018
  • This study aims to propose management strategies of ventilation paths for improving urban thermal environments. For this purpose, Gimhae-si in Gyeongsangnamdo was selected as a study area. We analyzed hot spots and cool spots in Gimhae by using Landsat 8 satellite image data and spatial statistical analysis, and finally derived the vulnerable areas to thermal environment. In addition, the characteristics of ventilation paths including wind direction and wind speed were analyzed by using data of the wind resource map provided by Korea Meteorological Administration. As a result, it was found that a lot of hot spots were similar to those with weak wind such as Jinyoung-eup, Jillye-myeon, Juchon-myeon and the downtown area. Based on the analysis, management strategies of ventilation paths in Gimhye were presented as follows. Jinyoung-eup and Jillye-myeon with hot spot areas and week wind areas have a strong possibility that hot spot areas will be extended and strengthened, because industrial areas are being built. Hence, climate-friendly urban and architectural plans considering ventilation paths is required in these areas. In Juchon-myeon, where industrial complexes and agricultural complexes are located, climate-friendly plans are also required because high-rise apartment complexes and an urban development zone are planned, which may induce worse thermal environment in the future. It is expected that a planning of securing and enlarging ventilation paths will be established for climate-friendly urban management. and further the results will be utilized in urban renewal and environmental planning as well as urban basic plans. In addition, we expect that the results can be applied as basic data for climate change adaptation plan and the evaluation system for climate-friendly urban development of Gimhye.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.