• Title/Summary/Keyword: Heat Insulator

Search Result 155, Processing Time 0.018 seconds

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Analysis of Temperature Changes in Greenhouses with Recirculated Water Curtain System (순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Pyo, Hee-Young;Jeong, Jae-Woan;Kim, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • The purpose of this study was to determine the appropriate temperature for water curtain in greenhouses equipped with recirculated water curtain system. The study analyzed the changes in air temperature in non-heated greenhouses for strawberry cultivation based on outdoor temperature, water curtain temperature and night time. Three greenhouse units were used for this study: The first unit was assigned as a control (no water curtain system), two other greenhouses were equipped with recirculated water curtain system with water curtain temperatures of $10^{\circ}C$ and $15^{\circ}C$, respectively. Analysis showed that the indoor temperatures were directly correlated with the outdoor temperature in all experimental greenhouses. Heat insulating effect of $15^{\circ}C$ water curtain was increased by $1.3^{\circ}C$ compared to that in $10^{\circ}C$ water curtain system. The $15^{\circ}C$ water curtain treatment showed the highest average temperature and less temperature variation in comparison with control and $10^{\circ}C$ water curtain treatment. To maintain indoor temperature at $5^{\circ}C$, water curtain temperature of $10^{\circ}C$ was suitable when outdoor minimum and average temperatures were -1.3 and $1.5^{\circ}C$, and water curtain temperature of $15^{\circ}C$ was suitable when outdoor minimum and average temperatures were -4.7 and $-0.2^{\circ}C$, respectively. The highest temperature in greenhouses according to measurements in different periods of night time was observed after sunset (18:30-20:30), and the lowest temperature before sunrise (05:00-07:00). Water curtain maintained a target indoor temperature by acting as a layer of heat transfer insulator which decreased heat loss from greenhouses. Therefore, water temperature in recirculating water curtain systems should be determined by considering outdoor temperatures, changes in temperature at different periods of night time, and cultivated crop.

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.

Properties of quasi-noncombustible ultra-lightweight geopolymer (준불연 초경량 지오폴리머의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • EPS (expanded polystyrene) is one of the most used building materials for insulation that is favored by its excellent heat insulation, economical efficiency and lightweight characteristics. However, EPS is vulnerable to the fire and producing large amount of toxic gases in case of fire. Therefore, ultra-lightweight geopolymer which can replace EPS is fabricated by using IGCC (integrated gasification combined cycle) fused slag and Si sludge as raw materials and the possibility of replacement on ultra-lightweight geopolymer for EPS as an insulation building material was evaluated in this study. Ultra-lightweight geopolymer can be fabricated with the pulverized IGCC fused slag having low carbon content and density, compressive strength, thermal conductivity were $0.064g/cm^3$, 0.04 MPa, and 0.072 W/mK, respectively. The thermal conductivity of ultra-lightweight geopolymer is 1.5~2.0 times higher than that of EPS suggested in the KS M 3808; however, the thermal conductivity value of geopolymer is meaningful and competitive to that of EPS in the market. Therefore, ultralightweight geopolymer can be applicable to the building material for thermal insulation purpose and have an enough possibility to replace EPS in the future because it is not only much safer than EPS in case of fire but also it can be fabricate by using waste materials from the industry.

Analysis of Heating Characteristics of Multi-Layered Insulation Curtain with Silica Aerogel in Greenhouses (실리카 에어로겔을 이용한 다겹보온커튼의 온실 난방 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.320-325
    • /
    • 2020
  • This study aimed to analyze thermo-keeping and economic feasibility by utilizing silica aerogel, which has been attracting attention as a new material, complementing the disadvantages of the conventional multi-layered thermal screen, and producing and installing multi-layered thermal screen. The multi-layered thermal screen used in the experiment was produced in two combinations using a non-woven fabric containing silica aerogel and measured and compared the temperature and fuel consumption changes due to differences in practice with the multi-layered thermal screen being sold and used on the market. Experimental results show that the temperature and relative humidity changes due to the differences of the multi-layered thermal screens in the single-span greenhouse and the multi-span greenhouse were small but remained almost the same temperature and relative humidity. It is judged that this shows that the multi-layered thermal screen using silica aerogel is not inferior to the conventional multi-layered thermal screen. As a result of a comparative analysis of heating energy, the aerogel-based multi-layered thermal screen reduced fuel consumption by about 15% in the single-span greenhouse and about 20% in the multi-span greenhouse compared to the conventional multi-layered thermal screen. It is clear that heating energy is saved as a greenhouse size and duration increase. It was found that the silica aerogel-based multi-layered screen was more breathable and warmer than the conventional multi-layered thermal screen, but It was found that the multi-layered screen used in the multi-span greenhouse was heavier and stiff compared with the conventional multi-layered thermal screen, indicating less workability and operability. Therefore, improvements were applied to the multi-layered screens used in the single-span greenhouses. It was confirmed that the replacement of internal insulation materials reduced thickness and improved stiffness so that there could be sufficient possibility for farmers to use.