• Title/Summary/Keyword: Heat Input capacity

Search Result 74, Processing Time 0.025 seconds

Characteristics of CW Nd:YAG Laser Lap Welds of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파형 Nd:YAG 레이저 겹치기용접 특성)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.18-27
    • /
    • 2007
  • Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, ease of automation, single-pass thick section capability, enhanced design flexibility, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as the welding fur metals with CW Nd:YAG lasers. The bead-on-plate and Lap welding experiments are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the welding quality of the cross section, tensile stress behavior and the hardness of the welded part are investigated in comparison of the Nickel coated and Nickel uncoated S45C steel. As a result of experiment, nickel coated S45C Steel showed more even weld zone than Nickel uncoated counterpart upon lap welding. Also, it showed relatively small amount of internal defects and spatter, and Nickel coated S45C showed better weldability than Nickel uncoated S45C steel. The optimum welding process upon lap welding of Nickel coated S45C steel is when each laser power is 1900W; focal positions is -1mm; welding speed is $0.9{\sim}1.0m/min$. The heat input was $4.178{\sim}4.36{\times}103J/cm^2$.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow (평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구)

  • Karng, Sarng-Woo;Shin, Jae-Hoon;Han, Hun-Sik;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor ($CO_2$ 2단 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

Control for Minimizing Power Consumption in Micro Disk Drives (마이크로 디스크 드라이브의 전력소모 최소화 제어)

  • 백상은;심준석;강창익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Recently, the demand for micro hard disk drive that provides high-capacity removable storage for handhold electronic devices is growing very rapidly Reducing power consumption is one of the primary control objectives in micro disk drives. The input power delivered to the seek servo system is consumed as heat by the transistors of power amplifier and motor coil resistance. In this paper, we present a new seek servo controller for minimizing the power consumption. We use a Fourier decomposition and nonlinear programming to determine the optimum seek profile that minimizes the power consumption. Also, the trajectory tracking controller is developed for exact tracking of the optimum seek profile. Finally, we present some experimental results using a commercially available micro disk drive in order to demonstrate the superior performance of the proposed controller.

Welding Characteristics of SCP1 on CW Nd:Yag Laser (CW Nd:YAG 레이저에 의한 SCP1의 용접특성)

  • Shin, Byung-Heon;Yoo, Young-Tae;Shin, Ho-Jun;Yun, Chul-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.35-43
    • /
    • 2007
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1325W of the laser power, and 1.4m/min of laser welding speed.

A Lossless Snubber Circuit on Power Supply for Welding Machines' Output Rectification Diode (용접기용 전원장치의 출력정류부 다이오드의 무손실 스너버회로)

  • Ra, B.H.;GU, H.H.;Kim, D.U.;Shin, D.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2109-2111
    • /
    • 1998
  • This paper proposes a new lossless snubber circuit on power supply for welding machine's output rectification diode. To improve the common inverter control type power supplies' problems that energy loss and heating in the snubber circuit because the output capacity makes too big heat energy in the circuit when the output current of the inverter is rectified by the diode bridge circuit, which includes the snubber circuit. This paper suggested new snubber circuit have increased power factor and confidence of output by being regenerate thus lost energy to input node.

  • PDF

A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method (다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

The study on DC-link Film Capacitor in 3 Phase Inverter System for the Consideration of Frequency Response (3상 인버터 시스템에서 주파수 특성을 고려한 필름 콘덴서의 DC-link 적용 방법에 관한 연구)

  • Park, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.117-122
    • /
    • 2018
  • A large-capacity three-phase system air conditioner recently includes an inverter circuit to reduce power consumption. The inverter circuit uses a DC voltage that comes from DC-link power capacitor with the function of rectifying, which means AC voltage to DC voltage using a diode. An electrolytic capacitor is generally used to satisfy the voltage ripple and current ripple conditions of a DC-link power capacitor used for rectifying. Reducing the capacitance of the capacitor decreases the size, weight, and cost of the circuit. This paper proposes an algorithm to reduce the input ripple current by combining the minimum point estimation phase locked loop (PLL) phase control and the average voltage d axis current control technique. When this algorithm was used, the input ripple current decreased by almost 90%. The current ripple of the DC-link capacitor decreased due to the decrease in input ripple current. The capacitor capacity can be reduced but the electrolytic capacitor has a heat generation problem and life-time limitations because of its large equivalent series resistance (ESR). This paper proposes a method to select a film capacitor considering the current ripple at DC-link stage instead of an electrolytic capacitor. The capacitance was selected considering the voltage limitation, RMS (Root Mean Square) current capacity, and RMS current frequency analysis. A $1680{\mu}F$ electrolytic capacitor can be reduced to a $20{\mu}F$ film capacitor, which has the benefit of size, weight and cost. These results were verified by motor operation.