• Title/Summary/Keyword: Heat Generator

Search Result 587, Processing Time 0.033 seconds

Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder (원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

Numerical Study on the Heat Transfer Enhancement of Trapezoidal Vortex Generator in a Rectangular Channel (사각채널에서 사다리꼴 와류발생기에 의한 열전달 촉진에 대한 수치해석)

  • Park, T.H.;Lee, S.R.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.852-857
    • /
    • 2018
  • Vortex Generators are used in heat exchanger to enhance the heat transfer of air side. 3-D numerical analysis is performed on heat transfer characteristics of a channel with trapezoidal vortex generator. We investigate the effects of vortex generators with two different inclined angles to flow direction which are forward and backward vortex generators. The thermal hydraulic performance such as Nu and pressure drop, is compared quantitatively. The results show that vortex generator enhances the heat transfer by developing boundary layers and secondary flow in the downstream. The downwash flow region corresponds to the maximum Nu, while the upwash flow region corresponds to Nu minimum. In the view of the heat transfer characteristics, FVG is better than BVG. However, when flow is turbulent as Re increases, the pressure drop for FVG is higher than that for BVG.

An Experimental Study on the Possibility of Biogas Reforming using the Waste Heat of a Small-Sized Gas Engine Generator (소형 가스엔진 발전기의 배기가스 폐열을 이용한 바이오가스 개질 가능성에 관한 실험적 연구)

  • Cha, Hyo-Seok;Kim, Tae-Soo;Eom, Tae-Jun;Jung, Choong-Soo;Chun, Kwang-Min;Song, Soon-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • This study has been carried out the experiment for the possibility of biogas reforming using waste heat. The source of this waste heat is the exhaust gas from a small-sized gas engine generator. For recovering the waste heat, Two-stage heat exchanger is manufactured. The two-stage heat exchanger is composed of a heat exchanger for the exhaust gas and a heat exchanger for the water. This two-stage heat exchanger is used for reforming the biogas by means of on-site hydrogen production at the small-sized gas engine generator. The two-stage heat exchanger is coupled with the biogas reformer which is a kind of catalytic reformer. To confirm a heat recovery efficiency of the two-stage heat exchanger, temperature differences of inlet and outlet locations are measured. Also, the variations of syngas concentrations with various biogas flow rates are investigated. As a result using manufactured two-stage heat exchanger, the biogas can be reformed from waste heat recovery. This experiment suggests that the exhaust gas heat exchanger is available for reforming the biogas.

Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator (와류발생기의 가진 주파수에 의한 열전달 향상)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Yea, Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.

Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator (와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진)

  • 박병규;정재동;이준식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

  • Lim, Heok-Soon;Song, Tae-Young;Chi, Moon-Goo;Kim, Seoung-Rae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

Tube Plugging Criteria for the Non-Regenerative Heat Exchanger in the Steam Generator Blowdown System of Nuclear Power Plant (증기발생기 취출수계통 비재생열교환기 전열관 관막음 기준 설정)

  • Kim, Hyeong-Nam;Choe, Seong-Nam;Yu, Hyeon-Ju;Choe, Jin-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.38-40
    • /
    • 2006
  • Nuclear power plants are urged to reduce operating and maintaining costs to remain competitive as well as to increase the safety preventing the radioactive material to the atmosphere. To reduce the cost and to increase the safety, the inspection of balance-of-plant heat exchanger becomes important. However, there are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. The codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the non-regenerative heat exchanger in the steam generator blow-down system of nuclear power plant. This method relies on the similar method used to establish the plugging criteria for the steam generator tubes.

  • PDF

Numerical Prediction of Forced Convective Boiling Heat Transfer and Flow in Steam Generator Helical Coils (헬리컬 증기발생기 코일에서 강제대류 비등 열전달 및 유동의 수치 적 예측)

  • Jo J. C.;Kim H. J.;Kim W. S.;Yu S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • In this study, three-dimensional numerical calculations are peformed to simulate the flow and heat transfer in helically coiled tube steam generator employing a commercial CFD (Computational Fluid Dynamics) code. The problem considered herein includes the boiling phase change flow of tube side fluid and the single-phase counter-current flow of shell side hot fluid transferring heat to the tube side flow thru the tube wall. Detailed investigations are performed for both shell-side and tube-side flow fields in terms of density and volume fractions of each phase of fluids as well as for the tube wall heat transfer field in terms of heat transfer coefficients.

  • PDF