• Title/Summary/Keyword: Heat Forming

Search Result 600, Processing Time 0.024 seconds

Effect of Forming Temperature on Spring-back in Hot Forming Quenching of AA6061 Sheet (AA6061 판재의 핫 포밍 퀜칭 공정에서 성형온도가 스프링백에 미치는 영향)

  • Shim, I.B.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • Aluminum alloys are widely used in automotive industry because of their high strength-to-density ratio and excellent corrosion resistance. However, conventional cold stamping of aluminum alloys leads to low formability and excessive spring-back. To overcome these problems, Hot Forming Quenching (HFQ) is applied to manufacture automotive part using aluminum alloy. The purpose of this study is to investigate effect of forming temperature on spring-back in HFQ of T6 heat treated AA6061 sheet. In this study, hat shape forming test was adopted to evaluate spring-back characteristics according to various forming temperatures. In additions, the test was also performed with warm forming conditions in comparison with dimensional accuracy of HFQed part. The experimental results showed that dimensional accuracy of HFQed part was superior to warm formed part and amount of spring-back was decreased as forming temperature rise.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-Isothermal Forming Processes for Aluminum Alloy Sheets (Part2 : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • ;;R.H. Wagoner
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.710-717
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures for the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

Determination of the interface heat transfer coefficient for hot-forming process of Ti-6Al-4V (Ti-6Al-4V 합금의 열간성형공정에 대한 계면열전달계수의 결정)

  • 염종택;임정숙;나영상;박노광;신태진;황상무;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • The interface heat transfer coefficient was measured for non-isothermal bulk forming of Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI H13 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

  • PDF

Post-heat Treatment Properties of Thixoformed of A357 Al Alloy Product (반응고 성형된 A357 Al 합금 성형품의 후열처리 특성)

  • Choi, W.H.;Shin, P.W.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Recently, semi-solid forming (SSF) Process has been applied in many automobile parts for improved weight reduction, better environmental protection and energy savings. SSF process was well developed for high volume production of light weight aluminum components. In this paper, knuckle has been manufactured by SSF and then the microstructures and mechanical properties were investigated followed by various heat-treatment conditions. It was found that the examined microstructure was equiaxed at the whole cross-section area.

Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects (용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가)

  • Chung, K.H.;Kwon, H.S.;Park, S.H.;Ro, D.S.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

Determination and Analysis of Interface Heat Transfer Coefficients in Hot Forming of Ti-6Al-4V (Ti-6Al-4V 합금의 열간성형에 대한 계면열전달계수의 결정 및 분석)

  • 염종택;임정숙;박노광;신태진;황상무;홍성석
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.370-375
    • /
    • 2003
  • Determination of the interface heat transfer coefficient was investigated in non-isothermal bulk forming of glass-coated Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI Hl3 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

Multi-point Dieless Forming Technology Using Local Heating Effect (국부가열효과를 활용한 다점성형공정기술)

  • Park, J.W.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • The multi-point dieless forming technology is one of flexible forming technologies that can form 3D curved surfaces of various shapes utilizing a lot of punch arrangements. A new technology that can simultaneously apply high-temperature forming and flexible forming technology by fusing local heating effect to such multi-point dieless forming technology was proposed in the present study. A simple local heating multi-point dieless forming apparatus was fabricated to confirm the applicability of this new technology. This equipment was designed to be used as a heat source by inserting heating cartridges in the head of the multi-point punch. Cartridges were used for all individual punches. Using the manufactured equipment, the time to raise the temperature to the target temperature and the surface temperature of the punch head part in contact with the plate were measured. In addition, forming experiments were carried out according to sheet material temperature (100 ℃, 200 ℃, and 300 ℃) to obtain forming results for each condition. The applicability and feasibility of this technology were confirmed through experimental results.