• Title/Summary/Keyword: Heat Flux Characteristics

Search Result 745, Processing Time 0.023 seconds

Water Balance Estimate of LID Technique for Circulating Urban Design (순환형 도시계획에 따른 LID기술의 물수지 분석)

  • Kang, Sung-Hee;Heo, Woo-Myung;Kang, Sang-Hyeok
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1065-1073
    • /
    • 2015
  • Urbanization can be significantly affected the hydrologic cycle by increasing flood discharge and heat flux. In order to mitigate these modifications in urban areas, Low Impact Development (LID) technique has been designed and applied in Korea. In order to estimate runoff reduction rate using SWMM LID model, the characteristics of five LID techniques was firstly analyzed for water balance. Vegetated swale and green roof were not reduce flood discharge nor infiltration amount. On the other hand, porous pavement and infiltration trench were captured by infiltration function. The flood reduction rate with LID is substantially affected by their structures and properties, e.g., the percentage of the area installed with LID components and the percentage of the drainage area of the LID components.

Analysis of surface-hardening Induction heating (파열물의 표면 열처리를 위한 유도가열의 특성해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Ryu, D.W.;Choi, P.I.;Lee, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.287-289
    • /
    • 2000
  • Induction heating is utilized in a large and ever-increasing number of application. The most prominent of these are billet heating heat treating, metals joining, and metal melting. In these day, heating roll, a kind of induction heating, is widely used in curing of coatings and fiber industry. In this paper, at first, treated that heating roll's characteristics equation. The second, analysis of magnetic flux and eddy currents distribution using FEM.

  • PDF

A Study on the Estimation of Air-Sea Heat Fluxes and the Wave Characteristics using Chilbaldo Buoy Data (칠발도 Buoy자료를 이용한 해양-대기 열교환량 산출 및 파랑 특성에 관한 연구)

  • Youn, Yong-Hoon;Hong, Sung-Gil;Hong, Yoon;Lee, Ji-Yeon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Hourly meteorological data from a marine buoy ($34^{\circ}49'00"N$, $125^{\circ}46'00"E$) operated by the Korean Meteorological Agency were obtained from July, 1996 to February, 1997. From the data air-sea heat fluxes and marine meteorological characteristics around the area are estimated. The maximum outflux of sensible heat from the sea surface occurred in January (monthly mean value, 12.6 $Wm^{-2}$ and the maximum influx to the sea occurred in July (monthly mean value, 5.5 $Wm^{-2}$). This means that the sea is heated in summer while it loses its heat in winter, and that there is inequality between the absolute values of the two seasons. The outflux of the maximum latent heat occurred in November (monthly mean value, 86.5 $Wm^{-2}$) and reach a value of 300 $Wm^{-2}$, and the maximum influx occurred in July (monthly mean value, 4.6 $Wm^{-2}$). Big difference is shown in their absolute values when the wind becomes strong. The outgoing latent heat flux reaches its maximum in autumn, and it maintains the high value through the whole winter. According to the wave data analysis, the significant wave heights are larger in winter than in summer. The periods of the significant waves are 4~6 sec. In winter, waves propagated from north and northeast are dominant because of the winter monsoon, while in summer waves from south, southwest, and west are relatively frequent.

  • PDF

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

An analysis on the characteristics of regasification system for gas fuelled ship depending on the mixing ratio of eglycol and water (Gas Fuelled Ship용 재기화 시스템의 Eglycol Water 혼합비율에 따른 시스템 특성분석)

  • Lee, Yoon-Ho;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.799-805
    • /
    • 2014
  • Recently, the regulations of the Local and Global for a variety of air pollution prevention has been enhanced by the steep rise in fuel oil prices. So, the appearance of Gas Fuelled Ships became necessary. In this study, we configured a regasification system which uses Eglycol water as a heating medium to evaporate before being supply fuel to the DF engine, then we analysed the system properties according to the Eglycol water mixing ratio. The results were as follows. When pressure, temperature, and flux of natural gas(NG) which are supplied to DF engines are uniformly kept, the higher mixing ratio of Eglycol is, the lower mixing specific heat of Eglycol water. And the cycle flux and electric power were 1.65 and 1.54 times more required. respectively, than water was used as the heating medium. Basic variables including mass flux according to the mixing ratio of Eglycol water, required electric power of operating fluid pumps, the temperature of natural gas which is supplied to the engine, and the heat exchanger's capacity were drawn from the gotten results.

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed - (Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -)

  • Lee, Yong-Gwan;Kim, Sang-Ho;Ahn, So-Ra;Choi, Min-Ha;Lim, Kwang-Suop;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.90-104
    • /
    • 2015
  • The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

A Characteristic Analysis of Glass Beads in Geumgwan Gaya, Korea (I) (금관가야 유리구슬의 특성 분석 (I))

  • Kim, Eun A;Lee, Je Hyun;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.232-244
    • /
    • 2021
  • This study examined the physical attributes and heat treatment characteristics of glass beads excavated from the Gimhae area, which is the location of Geumgwan Gaya. This enabled classification of surface characteristics of the beads based on the investigation of the color, size, and shape. The glass beads were classified into eight color systems, with purplish-blue beads as the representative color. Bead size was categorized into three types depending on the outer diameter and how it increased over time. Bead shapes were categorized as round, tubular, or doughnut-shaped based on the inner diameter and length, with round being the typical shape. According to the degree of heat treatment, there are three types of cross-section for glass beads that are manufactured by the drawing technique, most of which are the HT-III type. In addition, it is estimated that the heat treatment technology has more considerable effects than other methods. Through non-destructive analysis, the chemical composition was obtained and categorized as flux, stabilizer, and colorant. Analysis confirmed the presence of 63 and 9 pieces in the potash and soda glass groups, respectively. Overall findings from the study highlighted a correlation between the chemical composition and the external factors such as color, size, shape, and manufacturing technology of glass beads recovered from Geumgwan Gaya, revealing characteristics related to that time and region.

Heat Transfer Characteristics of Water Jet Impinging on Oblique Surface (경사면(傾斜面)에 충돌(衝突) 하는 수분류(水噴流)의 열전달(熱傳達) 특성(特性)에 관(關)한 연구(硏究))

  • Choi, Guk-Gwang;Na, Gi-Dae;Kim, Yeun-Young;Jeon, Sung-Taek;Lee, Jong-Su
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • The purpose of this research is to investigate the characteristics of heat transfer in the downward axisymmetric free water jet system impinged on a flat oblique plate which has the uniform heat flux. Experimental conditions considered were Reynolds number, distance between nozzle and Bat plate, inclination angle of heater surface and nozzle exit velocity. Local Nusselt number was subjected to the influence of Re number, Pr number, oblique angle of heating surface and local position of flat plate. In the wall region of downward surface, The secondary peak point of heat transfer appeared at the local point of X/D=-8 from the stagnation point. The stagnation heat transfer rate of this experimental study augments 2.4 times than that of laminar theorical solution. The stagnation nusselt number is function of Reynolds number, nozzle-plate spacing Prandtl number and oblique angle of impinging plate.

  • PDF

Comparison of Surface Fluxes Based on Landuse Characteristics Near Gangjeong-Goryeong Weir of the Nakdong River (낙동강 강정고령보에서 관측된 플럭스의 지표면에 따른 특성 비교)

  • Kahng, Keumah;Koo, Hae-Jung;Byon, Jae-Young;Park, Young-San;Jung, Hyun-Sook
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.561-574
    • /
    • 2013
  • This study investigates energy fluxes measured near Gangjeong-Goryeong Weir of the Nakdong River of South Korea for more than a year, from July 2011 to September 2012, in order to analyze the applicability of the data for future impact analyses. Each of the two study sites is located in a rural area, surrounded by agricultural fields, and an urban industrial area. Sensible and latent heat fluxes are analyzed according to the wind direction. In the summertime, when the wind blows from the river, sensible heat tends to decrease and latent heat tends to increase at both sites. This result is considered to be caused by moisture transfer from the river. Bowen ratio, energy balance closure, momentum flux, and stability are analyzed as well. The Bowen ratio of the rural agricultural site turns out higher than that of the urban site regardless of the season. The energy balance closure is higher at the agricultural site compared to the urban area, which is mainly due to exclusion of the storage term calculation at the urban site. The momentum flux is greater at the urban site both in winter and summer. The instability lasts longer during daytime and in the summertime, when there is a strong turbulence. The data from these sites are appropriate to be used in analyzing the impact of river in surrounding areas for future studies.

Study on the Thermal Characteristic Comparison of Fire.Explosion Hazard of Fugitive Dust Generated in the Manufacturing Process (제조공정상 발생하는 비산분진의 화재·폭발 위험성에 대한 열적특성 비교에 관한 연구)

  • Sun, Ko Jae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • This study carried out an experiment in order to compare thermal characteristics after collecting dust generated in the process of disposing of waste tire, plywood flour in the process of manufacturing plywood, salicylic acid dust in the process of manufacturing functional soap, and dust in the process of manufacturing wheat powder, which has potential fire and explosion hazard. According to the results of experiment, the analysis showed that all samples subject to the experiment were in the condition where heat flux decreased and temperature decreased as the quantity of added talc was increased. This shows that decomposition rate decreased, and hazard decreased. However, in all of samples subject to the experiment, as heating rate increased, endothermic onset temperature moved to the low-temperature part, and the amount of absorbed heat was largely increased. This showed that the decomposition hazard of sample increased as heating rate increased, according to the analysis. Besides, TGA experiment results showed that thermal stability was secured because total weight loss decreased as the amount of talc was increased for all samples subject to the experiment regarding the ratio of weight loss. It is expected that the continuous research and supplementation of dust explosion mechanism in the future will contribute to the establishment of measures for the effective dust explosion prevention.